180 research outputs found

    Evaluation of the Potential of Lactobacillus paracasei Adjuncts for Flavor Compounds Development and Diversification in Short-Aged Cheddar Cheese

    Get PDF
    peer-reviewedThe non-starter microbiota of Cheddar cheese mostly comprises mesophilic lactobacilli, such as Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Lactobacillus plantarum. These bacteria are recognized for their potential to improve Cheddar cheese flavor when used as adjunct cultures. In this study, three strains of L. paracasei (DPC2071, DPC4206, and DPC4536) were evaluated for their contribution to the enhancement and diversification of flavor in short-aged Cheddar cheese. The strains were selected based on their previously determined genomic diversity, variability in proteolytic enzyme activities and metabolic capability in cheese model systems. The addition of adjunct cultures did not affect the gross composition or levels of lipolysis of the cheeses. The levels of free amino acids (FAA) in cheeses showed a significant increase after 28 days of ripening. However, the concentrations of individual amino acids in the cheeses did not significantly differ except for some amino acids (aspartic acid, threonine, serine, and tryptophan) at Day 14. Volatile profile analysis revealed that the main compounds that differentiated the cheeses were of lipid origin, such as long chain aldehydes, acids, ketones, and lactones. This study demonstrated that the adjunct L. paracasei strains contributed to the development and diversification of compounds related to flavor in short-aged Cheddar cheeses

    Functional properties of Lactobacillus plantarum strains: A multivariate screening study

    Get PDF
    Abstract Thirty-two Lactobacillus plantarum strains isolated from different sources were genetically characterized at subspecies level with recA gene based multiplex PCR and pulsed-field electrophoresis. All the strains were tested in vitro for functional properties (ability to form biofilms, agglutination of yeast cells, bile salt hydrolase activity, β-galactosidase activity, surface hydrophobicity, resistance to lysozyme, gastric juice and bile salts), for antimicrobial activity and for antibiotic resistance. The presence of bsh and msa genes and of the pln bacteriocin loci were also evaluated. Hierarchical cluster analysis was used to identify eight different plantaritypes sharing similar patterns of pln loci. A global functional score was calculated by transforming values for continuous in vitro functional properties in an ordinal scale by cluster analysis, while a nominal scale was used for the other properties. Multidimensional scaling was used to evaluate the similarity in functional properties among the isolates and to evaluate the relationships between source of isolation and functional properties. Nine strains showed the best in vitro functional potential and a significant relationship was found between source of isolation and functional score. This study confirmed a high heterogeneity in functional properties among L. plantarum strains and provides insight for optimal screening strategies

    Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response

    Get PDF
    The polymorphism of 5 stress response genes (hrcA, ctsR, clpP, ftsH, dnaK) in 32 Lactobacillus plantarum strains was evaluated by multilocus restriction typing (MLRT) and by sequence analysis of ctsR, hrcA and clpP genes. Both these approaches allowed the discrimination of the subspecies L. plantarum ssp. plantarum and L. plantarum ssp. argentoratensis. HrcA sequence analysis also allowed discrimination at the species and subspecies level of several species of lactic acid bacteria, thus confirming that it can be used as a valuable taxonomic marker. No significant relationship was found between stress response gene polymorphism and resistance to heat treatments. The effect of temperature on growth kinetics and the protein expression were investigated for selected strains carrying different mutations in hrcA. L. plantarum ssp. argentoratensis NCIMB12120 and L. plantarum ssp. plantarum DPC2159, both of which had mutations in domains of HrcA which are important for the repressor functionality, had a reduced growth rate at all temperatures tested (25, 30, 37, 40, and 42 °C) compared to L. plantarum WCFS1. In L. plantarum DPC2159, protein expression upon temperature shifts from 25 to 40 °C or growth at 40 °C was altered compared to L. plantarum WCFS1, but further study is needed to unequivocally confirm the relationship with mutations in hrcA

    Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification

    Get PDF
    Aims: The Lactobacillus casei group represents a widely explored group of lactic acid bacteria, characterized by a high level of biodiversity. In this study, the genetic and phenotypic diversity of a collection of more than 300 isolates of the Lact. casei group and their potential to produce volatile metabolites important for flavour development in dairy products, was examined. Methods and Results: Following confirmation of species by 16S rRNA PCR, the diversity of the isolates was determined by pulsed-field gel electrophoresis. The activities of enzymes involved in the proteolytic cascade were assessed and significant differences among the strains were observed. Ten strains were chosen based on the results of their enzymes activities and they were analysed for their ability to produce volatiles in media with increased concentrations of a representative aromatic, branched chain and sulphur amino acid. Volatiles were assessed using gas chromatography coupled with mass spectrometry. Strain-dependent differences in the range and type of volatiles produced were evident. Conclusions: Strains of the Lact. casei group are characterized by genetic and metabolic diversity which supports variability in volatile production. Significance and Impact of the Study: This study provides a screening approach for the knowledge-based selection of strains potentially enabling flavour diversification in fermented dairy products

    Effects of Feeding Bt Maize to Sows during Gestation and Lactation on Maternal and Offspring Immunity and Fate of Transgenic Material

    Get PDF
    peer-reviewedBackground: We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material. Methodology/Principal Findings: On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment); 1) non-Bt control maize diet or 2) Bt-MON810 maize diet, which were fed for ~143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment). Presence of the cry1Ab transgene was assessed in sows' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05), while granulocyte percentage was lower (P<0.05) in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05), while lymphocyte percentage was higher (P<0.05) in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4+CD8+ lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05). Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring. Conclusions/Significance: Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007–2013) under grant agreement number 211820 and the Teagasc Walsh Fellowship Programme

    Effects of feeding Bt MON810 maize to sows during first gestation and lactation on maternal and offspring health indicators

    Get PDF
    A total of twenty-four sows and their offspring were used in a 20-week study to investigate the effects of feeding GM maize on maternal and offspring health. Sows were fed diets containing GM or non-GM maize from service to the end of lactation. GM maize-fed sows were heavier on day 56 of gestation (P< 0·05). Offspring from sows fed GM maize tended to be lighter at weaning (P= 0·08). Sows fed GM maize tended to have decreased serum total protein (P= 0·08), and increased serum creatinine (P< 0·05) and γ-glutamyltransferase activity (P= 0·07) on day 28 of lactation. Serum urea tended to be decreased on day 110 of gestation in GM maize-fed sows (P= 0·10) and in offspring at birth (P= 0·08). Both platelet count (P= 0·07) and mean cell Hb concentration (MCHC; P= 0·05) were decreased on day 110 of gestation in GM maize-fed sows; however, MCHC tended to be increased in offspring at birth (P= 0·08). There was a minimal effect of feeding GM maize to sows during gestation and lactation on maternal and offspring serum biochemistry and haematology at birth and body weight at weaning

    Protecting the outside: biological tools to manipulate the skin microbiota

    Get PDF
    Interest surrounding the role that skin microbes play in various aspects of human health has recently experienced a timely surge, particularly among researchers, clinicians and consumer-focused industries. The world is now approaching a post-antibiotic era where conventional antibacterial therapeutics have shown a loss in effectiveness due to overuse, leading to the looming antibiotic resistance crisis. The increasing threat posed by antibiotic resistance is compounded by an inadequate discovery rate of new antibiotics and has, in turn, resulted in global interest for alternative solutions. Recent studies have demonstrated that imbalances in skin microbiota are associated with assorted skin diseases and infections. Specifically, restoration of this ecosystem imbalance results in an alleviation of symptoms, achieved simply by applying bacteria normally found in abundance on healthy skin to the skin of those deficient in beneficial bacteria. The aim of this review is to discuss the currently available literature on biological tools that have the potential to manipulate the skin microbiota, with particular focus on bacteriocins, phage therapy, antibiotics, probiotics and targets of the gut-skin axis. This review will also address how the skin microbiota protects humans from invading pathogens in the external environment while discussing novel strategies to manipulate the skin microbiota to avoid and/or treat various disease states

    Use of smear bacteria and yeasts to modify flavour and appearance of Cheddar cheese

    Get PDF
    The strains Staphylococcus saprophyticus DPC5671 and Corynebacterium casei DPC5298 were applied in combination with Debaryomyces hansenii DPC6258 to the surface of young Cheddar cheese curd to obtain two different smear-ripened cheeses. A surface microbiota developed over the incubation period, comprising of both yeast and bacteria; pulsed field gel electrophoresis confirmed that the inoculated strains of S. saprophyticus DPC5671 or C. casei DPC5298 were the dominant bacterial strains on the surface of the cheese at the end of the ripening period. The smear cultures changed the appearance and aroma, which were significantly different from the control cheese. The approach presented in this study represents a method for the development of new cheese varieties with novel aromas within a short ripening time
    • …
    corecore