40 research outputs found

    Scoping study to identify potential circular economy actions, priority sectors, material flows and value chains

    Get PDF
    The circular economy is rapidly rising up political and business agendas. In contrast to today’s largely linear, ‘take-make-use-dispose’ economy, a circular economy represents a development strategy that enables economic growth while aiming to optimise the chain of consumption of biological and technical materials. A deep transformation of production chains and consumption patterns is envisaged to keep materials circulating in the economy for longer, re-designing industrial systems and encouraging cascading use of materials and waste. Although there are some elements of circularity such as recycling and composting in the linear economy (see Figure E1) where progress needs to be maintained, a circular economy goes beyond the pursuit of waste prevention and waste reduction to inspire technological, organisational and social innovation across and within value chains (see Figure E2). There are already several policies in place and activities underway that support a circular economy; however there remain a range of untapped opportunities, costs to be avoided and obstacles to be addressed in order to accelerate the move towards a circular economy in the EU. Against this backdrop, the European Commission (DG Environment) launched a Scoping study to identify potential circular economy actions, priority sectors, material flows & value chains. The study was carried out by the Policy Studies Institute (PSI), Institute for European Environmental Policy (IEEP), BIO and Ecologic Institute between November 2013 and July 2014. The aim of the study was to provide an initial scoping assessment of potential priorities and policy options to support the transition to a circular economy in the EU. The study reviewed existing literature, identified potential priority areas for action where accelerating the circular economy would be beneficial and where EU policy has a particular role to play, and developed policy options for consideration across a range of areas

    A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate

    Get PDF
    Background: Owing to its role in cancer, the phosphoinositide 3-kinase (PI3K)/Akt pathway is an attractive target for therapeutic intervention. We previously reported that the inhibition of Akt by inositol 1,3,4,5,6- pentakisphosphate (InsP5) results in anti-tumour properties. To further develop this compound we modified its structure to obtain more potent inhibitors of the PI3K/Akt pathway.Methods: Cell proliferation/survival was determined by cell counting, sulphorhodamine or acridine orange/ethidium bromide assay; Akt activation was determined by western blot analysis. In vivo effect of compounds was tested on PC3 xenografts, whereas in vitro activity on kinases was determined by SelectScreen Kinase Profiling Service.Results: The derivative 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5) is active towards cancer types resistant to InsP5 in vitro and in vivo. 2-O-Bn-InsP5 possesses higher pro-apoptotic activity than InsP 5 in sensitive cells and enhances the effect of anti-cancer compounds. 2-O-Bn-InsP5 specifically inhibits 3-phosphoinositide- dependent protein kinase 1 (PDK1) in vitro (IC 50 in the low nanomolar range) and the PDK1-dependent phosphorylation of Akt in cell lines and excised tumours. It is interesting to note that 2-O-Bn-InsP5 also inhibits the mammalian target of rapamycin (mTOR) in vitro.Conclusions: InsP5 and 2-O-Bn-InsP5 may represent lead compounds to develop novel inhibitors of the PI3K/Akt pathway (including potential dual PDK1/mTOR inhibitors) and novel potential anti-cancer drugs

    A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial

    Get PDF
    Multi-element interventions for first-episode psychosis (FEP) are promising, but have mostly been conducted in non-epidemiologically representative samples, thereby raising the risk of underestimating the complexities involved in treating FEP in 'real-world' services

    Surface characterization of anodic titanium dioxide films for photoelectrochemical solar cells

    No full text
    Three different titanium dioxide films have been prepared by anodic oxidation of titanium, and their morphology, structure and surface composition are examined, the latter by ESCA analysis. A mutual relationship has been found between the presence of metal atoms, such as sodium, in the bulk of the material and its response in photoelectrochemical cells. © 1986
    corecore