27 research outputs found

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    Intégration de données de séries temporelles phosphoprotéomiques dans des réseaux de connaissances antérieurs

    No full text
    Traditional canonical signaling pathways help to understand overall signaling processes inside the cell. Large scale phosphoproteomic data provide insight into alterations among different proteins under different experimental settings. Our goal is to combine the traditional signaling networks with complex phosphoproteomic time-series data in order to unravel cell specific signaling networks. On the application side, we apply and improve a caspo time series method conceived to integrate time series phosphoproteomic data into protein signaling networks. We use a large-scale real case study from the HPN-DREAM BreastCancer challenge. We infer a family of Boolean models from multiple perturbation time series data of four breast cancer cell lines given a prior protein signaling network. The obtained results are comparable to the top performing teams of the HPN-DREAM challenge. We also discovered that the similar models are clustered to getherin the solutions space. On the computational side, we improved the method to discover diverse solutions and improve the computational time.Les voies de signalisation canoniques traditionnelles aident Ă  comprendre l'ensemble des processus de signalisation Ă  l'intĂ©rieur de la cellule. Les donnĂ©es phosphoprotĂ©omiques Ă  grande Ă©chelle donnent un aperçu des altĂ©rations entre diffĂ©rentes protĂ©ines dans diffĂ©rents contextes expĂ©rimentaux. Notre objectif est de combiner les rĂ©seaux de signalisation traditionnels avec des donnĂ©es de sĂ©ries temporelles phosphoprotĂ©omiques complexes afin de dĂ©mĂȘler les rĂ©seaux de signalisation spĂ©cifiques aux cellules. CĂŽtĂ© application, nous appliquons et amĂ©liorons une mĂ©thode de sĂ©ries temporelles caspo conçue pour intĂ©grer des donnĂ©es phosphoprotĂ©omiques de sĂ©ries temporelles dans des rĂ©seaux de signalisation de protĂ©ines. Nous utilisons une Ă©tude de cas rĂ©el Ă  grande Ă©chelle tirĂ©e du dĂ©fi HPN-DREAM BreastCancer. Nous dĂ©duisons une famille de modĂšles boolĂ©ens Ă  partir de donnĂ©es de sĂ©ries temporelles de perturbations multiples de quatre lignĂ©es cellulaires de cancer du sein, compte tenu d'un rĂ©seau de signalisation protĂ©ique antĂ©rieur. Les rĂ©sultats obtenus sont comparables aux Ă©quipes les plus performantes du challenge HPN-DREAM. Nous avons dĂ©couvert que les modĂšles similaires sont regroupĂ©s dans l'espace de solutions. Du cĂŽtĂ© informatique, nous avons amĂ©liorĂ© la mĂ©thode pour dĂ©couvrir diverses solutions et amĂ©liorer le temps de calcul

    Intégration de données de séries temporelles phosphoprotéomiques dans des réseaux de connaissances antérieurs

    No full text
    Traditional canonical signaling pathways help to understand overall signaling processes inside the cell. Large scale phosphoproteomic data provide insight into alterations among different proteins under different experimental settings. Our goal is to combine the traditional signaling networks with complex phosphoproteomic time-series data in order to unravel cell specific signaling networks. On the application side, we apply and improve a caspo time series method conceived to integrate time series phosphoproteomic data into protein signaling networks. We use a large-scale real case study from the HPN-DREAM BreastCancer challenge. We infer a family of Boolean models from multiple perturbation time series data of four breast cancer cell lines given a prior protein signaling network. The obtained results are comparable to the top performing teams of the HPN-DREAM challenge. We also discovered that the similar models are clustered to getherin the solutions space. On the computational side, we improved the method to discover diverse solutions and improve the computational time.Les voies de signalisation canoniques traditionnelles aident Ă  comprendre l'ensemble des processus de signalisation Ă  l'intĂ©rieur de la cellule. Les donnĂ©es phosphoprotĂ©omiques Ă  grande Ă©chelle donnent un aperçu des altĂ©rations entre diffĂ©rentes protĂ©ines dans diffĂ©rents contextes expĂ©rimentaux. Notre objectif est de combiner les rĂ©seaux de signalisation traditionnels avec des donnĂ©es de sĂ©ries temporelles phosphoprotĂ©omiques complexes afin de dĂ©mĂȘler les rĂ©seaux de signalisation spĂ©cifiques aux cellules. CĂŽtĂ© application, nous appliquons et amĂ©liorons une mĂ©thode de sĂ©ries temporelles caspo conçue pour intĂ©grer des donnĂ©es phosphoprotĂ©omiques de sĂ©ries temporelles dans des rĂ©seaux de signalisation de protĂ©ines. Nous utilisons une Ă©tude de cas rĂ©el Ă  grande Ă©chelle tirĂ©e du dĂ©fi HPN-DREAM BreastCancer. Nous dĂ©duisons une famille de modĂšles boolĂ©ens Ă  partir de donnĂ©es de sĂ©ries temporelles de perturbations multiples de quatre lignĂ©es cellulaires de cancer du sein, compte tenu d'un rĂ©seau de signalisation protĂ©ique antĂ©rieur. Les rĂ©sultats obtenus sont comparables aux Ă©quipes les plus performantes du challenge HPN-DREAM. Nous avons dĂ©couvert que les modĂšles similaires sont regroupĂ©s dans l'espace de solutions. Du cĂŽtĂ© informatique, nous avons amĂ©liorĂ© la mĂ©thode pour dĂ©couvrir diverses solutions et amĂ©liorer le temps de calcul

    An overview of deep learning applications in precocious puberty and thyroid dysfunction

    No full text
    International audienceIn the last decade, deep learning methods have garnered a great deal of attention in endocrinology research. In this article, we provide a summary of current deep learning applications in endocrine disorders caused by either precocious onset of adult hormone or abnormal amount of hormone production. To give access to the broader audience, we start with a gentle introduction to deep learning and its most commonly used architectures, and then we focus on the research trends of deep learning applications in thyroid dysfunction classification and precocious puberty diagnosis. We highlight the strengths and weaknesses of various approaches and discuss potential solutions to different challenges. We also go through the practical considerations useful for choosing (and building) the deep learning model, as well as for understanding the thought process behind different decisions made by these models. Finally, we give concluding remarks and future directions

    Example of a <i>Stochastic Petri Net</i>.

    No full text
    <p>(A) A <i>SPN</i> consists of a set of places {<i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>p</i><sub>3</sub>}, set of transitions {<i>t</i><sub>1</sub>, <i>t</i><sub>2</sub>}, rates <i>Ό</i><sub>1</sub>, <i>Ό</i><sub>2</sub> and an initial marking <i>M</i><sub>0</sub> = (2, 2, 0). In case of this example <i>t</i><sub>1</sub> is 2 enabled and <i>t</i><sub>2</sub> is 0 enabled from the initial marking <i>M</i><sub>0</sub>. (B) The reachability graph obtained from initial marking <i>M</i><sub>0</sub> of the <i>Petri Net</i>. (C) The <i>Markov Chain</i> obtained from the reachability graph in (B). Every reachable marking of the <i>SPN</i> is associated with a state of the <i>Markov Chain</i> and a transition between states is labelled with the product of the enabling degree and rate.</p

    The states and the transitions of <i>SEIDQR(S/I)</i> model.

    No full text
    <p>The rectangles represent the compartments and the arrows represent the movement of hosts from one compartment to another. The labels on the rectangles indicate the type of compartment i.e. susceptible, exposed, infectious, delayed, quarantined and recovered. The labels on the arrows indicate the rate of transmission of hosts from one compartment to another.</p

    <i>Model Checking</i> Process.

    No full text
    <p>Model checker takes the system model and property specification as input and generates two types of output: (1) true which means property is satisfied (2) false with counter example which means property is not satisfied.</p

    Dynamical behaviour of the proposed system without Quarantine.

    No full text
    <p>Dynamical behaviour of the proposed system without Quarantine.</p

    Dynamical behaviour of the proposed system.

    No full text
    <p>Dynamical behaviour of the proposed system.</p

    Reachability Graph.

    No full text
    <p>Fig 13 shows the reachability graph consisting of a total of 56 unique markings and 273 transitions with initial marking <i>M</i><sub>0</sub> = (2, 0, 1, 0, 0, 0).</p
    corecore