55 research outputs found
Nonlinear sub-switching regime of magnetization dynamics in photo-magnetic garnets
We analyze, both experimentally and numerically, the nonlinear regime of the
photo-induced coherent magnetization dynamics in cobalt-doped yttrium iron
garnet films. Photo-magnetic excitation with femtosecond laser pulses reveals a
strongly nonlinear response of the spin subsystem with a significant increase
of the effective Gilbert damping. By varying both laser fluence and the
external magnetic field, we show that this nonlinearity originates in the
anharmonicity of the magnetic energy landscape. We numerically map the
parameter workspace for the nonlinear photo-induced spin dynamics below the
photo-magnetic switching threshold. Corroborated by numerical simulations of
the Landau-Lifshitz-Gilbert equation, our results highlight the key role of the
cubic symmetry of the magnetic subsystem in reaching the nonlinear spin
precession regime. These findings expand the fundamental understanding of
laser-induced nonlinear spin dynamics as well as facilitate the development of
applied photo-magnetism
Surface plasmon-mediated nanoscale localization of laser-driven sub-THz spin dynamics in magnetic dielectrics
Ultrafast all-optical control of spins with femtosecond laser pulses is one
of the hot topics at the crossroads of photonics and magnetism with a direct
impact on future magnetic recording. Unveiling light-assisted recording
mechanisms for an increase of the bit density beyond the diffraction limit
without excessive heating of the recording medium is an open challenge. Here we
show that surface plasmon-polaritons in hybrid metal-dielectric structures can
provide spatial confinement of the inverse Faraday effect, mediating the
excitation of localized coherent spin precession with 0.41 THz frequency. We
demonstrate a two orders of magnitude enhancement of the excitation efficiency
at the surface plasmon resonance within the 100 nm layer in dielectric garnet.
Our findings broaden the horizons of ultrafast spin-plasmonics and open
pathways towards non-thermal opto-magnetic recording at the nano-scale
Magneto-optical properties of Au upon the injection of hot spin-polarized electrons across Fe/Au(001) interfaces
We demonstrate a novel method for the excitation of sizable magneto-optical
effects in Au by means of the laser-induced injection of hot spin-polarized
electrons in Au/Fe/MgO(001) heterostructures. It is based on the energy- and
spin-dependent electron transmittance of Fe/Au interface which acts as a spin
filter for non-thermalized electrons optically excited in Fe. We show that
after crossing the interface, majority electrons propagate through the Au layer
with the velocity on the order of 1 nm/fs (close to the Fermi velocity) and the
decay length on the order of 100 nm. Featuring ultrafast functionality and
requiring no strong external magnetic fields, spin injection results in a
distinct magneto-optical response of Au. We develop a formalism based on the
phase of the transient complex MOKE response and demonstrate its robustness in
a plethora of experimental and theoretical MOKE studies on Au, including our ab
initio calculations. Our work introduces a flexible tool to manipulate
magneto-optical properties of metals on the femtosecond timescale that holds
high potential for active magneto-photonics, plasmonics, and spintronics
Ultrafast transport of laser-excited spin polarized carriers in Au/Fe/MgO(001)
A time domain approach to probe hot carrier-induced spin dynamics is
demonstrated. The experiments are performed in epitaxial Au/Fe/MgO(001), where
spin-polarized hot carriers are excited in the Fe layer by 35 fs laser pulses.
They propagate to the Au surface where the transient spin polarization is
detected by magneto-induced second harmonic generation. Different energies of
majority and minority hot carriers excited in the exchange-split Fe band
structure lead to their spindependent lifetimes in Au. Accordingly, two
spin-polarized current contributions which propagate superdiffusively at
different velocities result in a spin current pulse of about 100 fs duration.Comment: 5 pages, 4 figure
Effective exchange interaction for terahertz spin waves in iron layers
The exchange stiffness is a central material parameter of all ferromagnetic materials. Its value controls the Curie temperature as well as the dynamic properties of spin waves to a large extent. Using ultrashort spin current pulses we excite perpendicular standing spin waves (PSSW) in ultrathin epitaxial iron layers at frequencies of up to 2.4 THz. Our analysis shows that for the PSSWs the observed exchange stiffness of iron is about 20% smaller compared to the established iron bulk value. In addition, we find an interface-related reduction of the effective exchange stiffness for layers with the thickness below 10 nm. To understand and discuss the possible mechanisms of the exchange stiffness reduction we develop an analytical one-dimensional model. In doing so we find that the interface induced reduction of the exchange stiffness is mode dependent
Non-equilibrium magnetic effects at interfaces for ultrafast dynamics (Conference Presentation)
Representing the future of spintronics, femtosecond spin current (SC) pulses constitute a versatile tool to transfer spin and control magnetization on the ultrafast timescale. It is therefore of paramount importance to understand the kinetics of these pulses and the fundamentals of their interaction with magnetized media. In our work, we demonstrate the key role of interfaces for the SC dynamics in Fe/Au/Fe multilayers. In particular, we argue that both (i) demagnetization caused by a pulse of hot electrons and (ii) spin transfer torque exerted by the orthogonal to the Fe magnetization projection of magnetic moment delivered by SC pulse are localized in the vicinity of the Fe/Au interface. We analyze both processes in details, showing that the SC-driven excitation of the sub-THz spin wave dynamics in Fe film is enabled by the spatial confinement of the exerted spin transfer torque. Moreover, a pulse of hot electrons leads to the efficient demagnetization of the Fe film. By disentangling the magneto-optical Kerr effect (MOKE) transients we demonstrate the strong spatial non-uniformity of this demagnetization. We argue that simultaneous recording of transient MOKE rotation and ellipticity is crucial for drawing such conclusions. Our findings have a twofold impact: firstly, they illustrate rich opportunities of utilizing SC pulses for manipulation of magnetization in ferromagnets and, secondly, they highlight the importance of spatial localization for understanding the ultrafast spin dynamics in multilayers
- …