5,962 research outputs found
Arithmetic Circuit Lower Bounds via MaxRank
We introduce the polynomial coefficient matrix and identify maximum rank of
this matrix under variable substitution as a complexity measure for
multivariate polynomials. We use our techniques to prove super-polynomial lower
bounds against several classes of non-multilinear arithmetic circuits. In
particular, we obtain the following results :
As our main result, we prove that any homogeneous depth-3 circuit for
computing the product of matrices of dimension requires
size. This improves the lower bounds by Nisan and
Wigderson(1995) when .
There is an explicit polynomial on variables and degree at most
for which any depth-3 circuit of product dimension at most
(dimension of the space of affine forms feeding into each
product gate) requires size . This generalizes the lower bounds
against diagonal circuits proved by Saxena(2007). Diagonal circuits are of
product dimension 1.
We prove a lower bound on the size of product-sparse
formulas. By definition, any multilinear formula is a product-sparse formula.
Thus, our result extends the known super-polynomial lower bounds on the size of
multilinear formulas by Raz(2006).
We prove a lower bound on the size of partitioned arithmetic
branching programs. This result extends the known exponential lower bound on
the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page
Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements
Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)
Long-range entanglement generation via frequent measurements
A method is introduced whereby two non-interacting quantum subsystems, that
each interact with a third subsystem, are entangled via repeated projective
measurements of the state of the third subsystem. A variety of physical
examples are presented. The method can be used to establish long range
entanglement between distant parties in one parallel measurement step, thus
obviating the need for entanglement swapping.Comment: 7 pages, incl. 2 figures. v2: added a few small clarifications and a
referenc
Near-threshold high-order harmonic spectroscopy with aligned molecules
We study high-order harmonic generation in aligned molecules close to the
ionization threshold. Two distinct contributions to the harmonic signal are
observed, which show very different responses to molecular alignment and
ellipticity of the driving field. We perform a classical electron trajectory
analysis, taking into account the significant influence of the Coulomb
potential on the strong-field-driven electron dynamics. The two contributions
are related to primary ionization and excitation processes, offering a deeper
understanding of the origin of high harmonics near the ionization threshold.
This work shows that high harmonic spectroscopy can be extended to the
near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure
Interactions of asbestos-activated macrophages with an experimental fibrosarcoma
Supernatants from in vivo asbestos-activated macrophages failed to show any cytostatic activity against a syngeneic fibrosarcoma cell line in vitro. UICC chrysotile-induced peritoneal exudate cells also failed to demonstrate any growth inhibitory effect on the same cells in Winn assays of tumor growth. Mixing UICC crocidolite with inoculated tumor cells resulted in a dose-dependent inhibition of tumor growth; this could, however, be explained by a direct cytostatic effect on the tumor cells of high doses of crocidolite, which was observed in vitro
OStrich: Fair Scheduling for Multiple Submissions
International audienceCampaign Scheduling is characterized by multiple job submissions issued from multiple users over time. This model perfectly suits today's systems since most available parallel environments have multiple users sharing a common infrastructure. When scheduling individually the jobs submitted by various users, one crucial issue is to ensure fairness. This work presents a new fair scheduling algorithm called OStrich whose principle is to maintain a virtual time-sharing schedule in which the same amount of processors is assigned to each user. The completion times in the virtual schedule determine the execution order on the physical processors. Then, the campaigns are interleaved in a fair way by OStrich. For independent sequential jobs, we show that OStrich guarantees the stretch of a campaign to be proportional to campaign's size and the total number of users. The stretch is used for measuring by what factor a workload is slowed down relative to the time it takes on an unloaded system. The theoretical performance of our solution is assessed by simulating OStrich compared to the classical FCFS algorithm, issued from synthetic workload traces generated by two different user profiles. This is done to demonstrate how OStrich benefits both types of users, in contrast to FCFS
The Communication Cost of Simulating Bell Correlations
What classical resources are required to simulate quantum correlations? For
the simplest and most important case of local projective measurements on an
entangled Bell pair state, we show that exact simulation is possible using
local hidden variables augmented by just one bit of classical communication.
Certain quantum teleportation experiments, which teleport a single qubit,
therefore admit a local hidden variables model.Comment: 4 pages, 2 figures; reference adde
Quantum Interactive Proofs with Competing Provers
This paper studies quantum refereed games, which are quantum interactive
proof systems with two competing provers: one that tries to convince the
verifier to accept and the other that tries to convince the verifier to reject.
We prove that every language having an ordinary quantum interactive proof
system also has a quantum refereed game in which the verifier exchanges just
one round of messages with each prover. A key part of our proof is the fact
that there exists a single quantum measurement that reliably distinguishes
between mixed states chosen arbitrarily from disjoint convex sets having large
minimal trace distance from one another. We also show how to reduce the
probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200
Asynchronous response of coupled pacemaker neurons
We study a network model of two conductance-based pacemaker neurons of
differing natural frequency, coupled with either mutual excitation or
inhibition, and receiving shared random inhibitory synaptic input. The networks
may phase-lock spike-to-spike for strong mutual coupling. But the shared input
can desynchronize the locked spike-pairs by selectively eliminating the lagging
spike or modulating its timing with respect to the leading spike depending on
their separation time window. Such loss of synchrony is also found in a large
network of sparsely coupled heterogeneous spiking neurons receiving shared
input.Comment: 11 pages, 4 figures. To appear in Phys. Rev. Let
Experimental quantum communication complexity
We prove that the fidelity of two exemplary communication complexity
protocols, allowing for an N-1 bit communication, can be exponentially improved
by N-1 (unentangled) qubit communication. Taking into account, for a fair
comparison, all inefficiencies of state-of-the-art set-up, the experimental
implementation outperforms the best classical protocol, making it the candidate
for multi-party quantum communication applications.Comment: 4 pages, 2 eps figures, RevTEX4; submitted June 23, 200
- …
