1,376 research outputs found

    Convective dynamos: Symmetries and modulation

    Get PDF
    International audienc

    Topology and field strength in spherical, anelastic dynamo simulations

    Get PDF
    Numerical modelling of convection driven dynamos in the Boussinesq approximation revealed fundamental characteristics of the dynamo-generated magnetic fields and the fluid flow. Because these results were obtained for an incompressible fluid, their validity for gas planets and stars remains to be assessed. A common approach is to take some density stratification into account with the so-called anelastic approximation. The validity of previous results obtained in the Boussinesq approximation is tested for anelastic models. We point out and explain specific differences between both types of models, in particular with respect to the field geometry and the field strength, but we also compare scaling laws for the velocity amplitude, the magnetic dissipation time, and the convective heat flux. Our investigation is based on a systematic parameter study of spherical dynamo models in the anelastic approximation. We make use of a recently developed numerical solver and provide results for the test cases of the anelastic dynamo benchmark. The dichotomy of dipolar and multipolar dynamos identified in Boussinesq simulations is also present in our sample of anelastic models. Dipolar models require that the typical length scale of convection is an order of magnitude larger than the Rossby radius. However, the distinction between both classes of models is somewhat less explicit than in previous studies. This is mainly due to two reasons: we found a number of models with a considerable equatorial dipole contribution and an intermediate overall dipole field strength. Furthermore, a large density stratification may hamper the generation of dipole dominated magnetic fields. Previously proposed scaling laws, such as those for the field strength, are similarly applicable to anelastic models. It is not clear, however, if this consistency necessarily implies similar dynamo processes in both settings.Comment: 14 pages, 11 figure

    A Phase I/II Study of a 72-h Continuous Infusion of Etoposide in Advanced Soft Tissue Sarcoma

    Get PDF
    Purpose. The study was performed to assess the antitumour activity and toxicity of a 72-h continuous infusion of single-agent etoposide as second-line treatment for patients with locally advanced or metastatic soft tissue sarcoma (STS), following reports of substantial activity using this schedule of etoposide administration as first-line treatment in combination with ifosfamide

    Comprehensive Characterization of Mesenchymal Stem Cells from Human Placenta and Fetal Membrane and Their Response to Osteoactivin Stimulation

    Get PDF
    Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy and can be isolated from various sources of human adult tissues such as bone marrow (BM-MSC) and adipose tissue. However, cells from these tissues must be obtained through invasive procedures. We, therefore, characterized MSCs isolated from fresh placenta (Pl-MSC) and fetal membrane (Mb-MSC) through morphological and fluorescent-activated cell sorting (FACS). MSC frequency is higher in membrane than placenta (2.14%  ± 0.65 versus 15.67%  ± 0.29%). Pl/Mb-MSCs in vitro expansion potential was significantly higher than BM-MSCs. We demonstrated that one of the MSC-specific marker is sufficient for MSC isolation and that culture in specific media is the optimal way for selecting very homogenous MSC population. These MSCs could be differentiated into mesodermal cells expressing cell markers and cytologic staining consistent with mature osteoblasts and adipocytes. Transcriptomic analysis and cytokine arrays demonstrated broad similarity between placenta- and membrane-derived MSCs and only discrete differences with BM-MSCs with enrichment of networks involved in bone differentiation. Pl/Mb-MSCs displayed higher osteogenic differentiation potential than BM-MSC when their response to osteoactivin was evaluated. Fetal-tissue-derived mesenchymal cells may, therefore, be considered as a major source of MSCs to reach clinical scale banking in particular for bone regeneration
    corecore