46 research outputs found

    A New Wrinkle on Topical Vitamin E and Photo-inflammation: Mechanistic Studies of a Hydrophilic γ-Tocopherol Derivative Compared with α-Tocopherol

    Get PDF
    The antioxidant function of vitamin E is thought to mediate its photo-protective effects. Cyclooxygenase-2 (COX-2) is an important mediator of early photo-inflammation. Thus, the ability of γ-tocopherol to inhibit COX-2 activity independently of its antioxidant function raises important questions regarding potential roles that this form of vitamin E plays in photo-protection and skin cancer chemoprevention

    Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes

    Get PDF
    AbstractWe examined the contribution of specific EP receptors in regulating cell growth. By RT–PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanism, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways

    The PPARγ Agonist Rosiglitazone Suppresses Syngeneic Mouse SCC (Squamous Cell Carcinoma) Tumor Growth through an Immune-Mediated Mechanism

    Get PDF
    Recent evidence suggests that PPARγ agonists may promote anti-tumor immunity. We show that immunogenic PDV cutaneous squamous cell carcinoma (CSCC) tumors are rejected when injected intradermally at a low cell number (1 × 106) into immune competent syngeneic hosts, but not immune deficient mice. At higher cell numbers (5 × 106 PDV cells), progressively growing tumors were established in 14 of 15 vehicle treated mice while treatment of mice with the PPARγ agonist rosiglitazone resulted in increased tumor rejection (5 of 14 tumors), a significant decrease in PDV tumor size, and a significant decrease in tumor cell Ki67 labeling. Rosiglitazone treatment had no effect on tumor rejection, tumor volume or PDV tumor cell proliferation in immune deficient NOD.CB17-PrkdcSCID/J mice. Rosiglitazone treatment also promoted an increase in tumor infiltrating CD3+ T-cells at both early and late time points. In contrast, rosiglitazone treatment had no significant effect on myeloid cells expressing either CD11b or Gr-1 but suppressed a late accumulation of myeloid cells expressing both CD11b and Gr-1, suggesting a potential role for CD11b+Gr-1+ myeloid cells in the late anti-tumor immune response. Overall, our data provides evidence that the PPARγ agonist rosiglitazone promotes immune-mediated anti-neoplastic activity against tumors derived from this immunogenic CSCC cell line

    Large area, label-free imaging of extracellular matrix using telecentricity

    Get PDF
    Subtle alterations in stromal tissue structures and organizations within the extracellular matrix (ECM) have been observed in several types of tissue abnormalities, including early skin cancer and wounds. Current microscopic imaging methods often lack the ability to accurately determine the extent of malignancy over a large area, due to their limited field of view. In this research we focus on the development of simple mesoscopic (i.e. between microscopic and macroscopic) biomedical imaging device for non-invasive assessment of ECM alterations over a large, heterogeneous area. In our technology development, a telecentric lens, commonly used in machine vision systems but rarely used in biomedical imaging, serves as a key platform to visualize alterations in tissue microenvironments in a label-free manner over a clinically relevant area. In general, telecentric imaging represents a simple, alternative method for reducing unwanted scattering or diffuse light caused by the highly anisotropic scattering properties of biological tissue. In particular, under telecentric imaging the light intensity backscattered from biological tissue is mainly sensitive to the scattering anisotropy factor, possibly associated with the ECM. We demonstrate the inherent advantages of combining telecentric lens systems with hyperspectral imaging for providing optical information of tissue scattering in biological tissue of murine models, as well as light absorption of hemoglobin in blood vessel tissue phantoms. Thus, we envision that telecentric imaging could potentially serve for simple site-specific, tissue-based assessment of stromal alterations over a clinically relevant field of view in a label-free manner, for studying diseases associated with disruption of homeostasis in ECM

    Platelet-Activating Factor-Receptor and Tumor Immunity

    Get PDF
    First described in 1972 by Benveniste and colleagues, platelet-activating factor (PAF) remains one of the potent phospholipid known to date. The role of PAF produced enzymatically in mediating diverse biological and pathophysiological processes including inflammatory and allergic diseases and cancers in response to various stimuli has been extensively studied. However, little is known about the role of non-enzymatically-generated PAF-like lipids produced in response to pro-oxidative stressors, particularly in modulating the host immune responses to tumor immunity, which is the focus of this review

    Data-driven imaging of tissue inflammation using RGB-based hyperspectral reconstruction toward personal monitoring of dermatologic health

    Get PDF
    Sensitive and accurate assessment of dermatologic inflammatory hyperemia in otherwise grossly normal-appearing skin conditions is beneficial to laypeople for monitoring their own skin health on a regular basis, to patients for looking for timely clinical examination, and to primary care physicians or dermatologists for delivering effective treatments. We propose that mathematical hyperspectral reconstruction from RGB images in a simple imaging setup can provide reliable visualization of hemoglobin content in a large skin area. Without relying on a complicated, expensive, and slow hyperspectral imaging system, we demonstrate the feasibility of determining heterogeneous or multifocal areas of inflammatory hyperemia associated with experimental photocarcinogenesis in mice. We envision that RGB-based reconstructed hyperspectral imaging of subclinical inflammatory hyperemic foci could potentially be integrated with the built-in camera (RGB sensor) of a smartphone to develop a simple imaging device that could offer affordable monitoring of dermatologic health

    Cigarette smoke exposure mediated generation of Platelet-activating factor agonists induces systemic immunosuppression

    Get PDF
    poster abstractThe ubiquitous environmental pollutant cigarette smoke (CS) is known to exert immodulatory effects. CS also acts as a potent pro-oxidative stressor. Several studies including ours have characterized the importance of various pro-oxidative stressors including UVB to inhibit host immunity and an importance of the platelet-activating factor (1-alkyl-2-acetyl-glycerophosphocholine; PAF), a potent lipid mediator in this process. PAF is produced enzymatically in a tightly-controlled process. In addition, oxidative stressors can act directly on glycerophosphocholines (GPC) to produce oxidized GPC which are potent PAF-R agonists. The present studies employed model systems consisting of PAF-receptor (PAF-R)-expressing (KBP) and–deficient (KBM) cells and mice (wild type [WT] and Pafr-/-) to determine whether CS exposure could generate PAF-R agonists in blood and whether it could suppress contact hypersensitivity reactions in a PAF-R-dependent manner. We show that lipid extracts derived from the blood of CS-treated WT mice resulted in immediate intracellular calcium (Ca2+2+mice. This inhibitory effect of CS in WT mice were similar to those induced by a PAF-R agonist, CPAF or histamine. Furthermore, this inhibition of CHS by CS in WT mice was blocked by antioxidants vitamin C and N-acetyl cysteine. These findings indicate that CS exposure induces systemic immunosuppression in a PAF-R-dependent manner. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF agonists through lipid oxidation.) mobilization response only in KBP cells. However, no Camobilization response was detected with lipid extracts from non-smoked (sham) mice both in KBP and KBM cells. In addition, lipid extracts only from CS-treated mice induced an increase in IL-8 secretion in KBP cells indicating that CS generates systemic PAF-R agonists. CS exposure also inhibited contact hypersensitivity to the allergen dinitrofluorobenzene (DNFB) selectively in WT but not inPafr-/

    The Peroxisome Proliferator-Activated Receptor Gamma System Regulates Ultraviolet B-Induced Prostaglandin E2 Production in Human Epidermal Keratinocytes

    Get PDF
    Studies using PPARγ agonists in mouse skin have suggested that peroxisome proliferator-activated receptor gamma (PPARγ) is irrelevant to cutaneous photobiology. However, in several epithelial cell lines, ultraviolet B (UVB) has been shown to induce the nonenzymatic production of oxidized phospholipids that act as PPARγ agonists. UVB is also a potent inducer of prostaglandin E2 (PGE2) production and COX-2 expression in keratinocytes and PPARγ is coupled to increased PGE2 production in other cell lines. In this current study, we demonstrate that PPARγ agonists, but not PPARα or PPARβ/δ agonists, induce PGE2 production and COX-2 expression in primary human keratinocytes (PHKs). Importantly, PPARγ agonist-induced COX-2 expression and PGE2 production were partially inhibited by the PPARγ antagonist, GW9662, indicating that both PPARγ-dependent and -independent pathways are likely involved. GW9662 also suppressed UVB and tert-butylhydroperoxide- (TBH-) induced PGE2 production in PHKs and intact human epidermis and partially inhibited UVB-induced COX-2 expression in PHKs. These findings provide evidence that PPARγ is relevant to cutaneous photobiology in human epidermis

    Epidermal PPARγ influences subcutaneous tumor growth and acts through TNF-α to regulate contact hypersensitivity and the acute photoresponse

    Get PDF
    It is known that ultraviolet B (UVB) induces PPARγ ligand formation while loss of murine epidermal PPARγ (Pparg-/-epi) promotes UVB-induced apoptosis, inflammation, and carcinogenesis. PPARγ is known to suppress tumor necrosis factor-α (TNF-α) production. TNF-α is also known to promote UVB-induced inflammation, apoptosis, and immunosuppression. We show that Pparg-/-epi mice exhibit increased baseline TNF-α expression. Neutralizing Abs to TNF-α block the increased photo-inflammation and photo-toxicity that is observed in Pparg-/-epi mouse skin. Interestingly, the increase in UVB-induced apoptosis in Pparg-/-epi mice is not accompanied by a change in cyclobutane pyrimidine dimer clearance or in mutation burden. This suggests that loss of epidermal PPARγ does not result in a significant alteration in DNA repair capacity. However, loss of epidermal PPARγ results in marked immunosuppression using a contact hypersensitivity (CHS) model. This impaired CHS response was significantly alleviated using neutralizing TNF-α antibodies or loss of germline Tnf. In addition, the PPARγ agonist rosiglitazone reversed UVB-induced systemic immunosuppression (UV-IS) as well as UV-induced growth of B16F10 melanoma tumor cells in syngeneic mice. Finally, increased B16F10 tumor growth was observed when injected subcutaneously into Pparg-/-epi mice. Thus, we provide novel evidence that epidermal PPARγ is important for cutaneous immune function and the acute photoresponse

    Platelet-activating Factor-receptor agonists generated by chemotherapy thwart host anti-tumor immunity

    Get PDF
    poster abstractPrevious studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized glycerophosphocholine (Ox-GPC) lipids with Platelet-activating Factor-receptor (PAF-R) agonist activity. Because many chemotherapeutic agents also induce reactive oxygen species, the present studies were designed to define if chemotherapeutic agents could thwart host anti-tumor immunity against melanoma via PAF-R activation. We demonstrate that treatment of melanoma cell lines in vitro and tumors in vivo with chemotherapeutic agents generates PAF-R-agonists in a process blocked by antioxidants, indicating the involvement of non-enzymatic PAF-R-agonists in this event. In a model system consisting of implantation of two tumors, we show that intratumoral chemotherapy with melphalan or etoposide of one tumor significantly augments the growth of the other (untreated) tumor in wild-type but not PAF-R-deficient hosts. Chemotherapeutic agents-mediated PAF-R-dependent increased tumor growth is blocked by systemic administration of antioxidants and cyclooxygenase-2 inhibitors. In addition, depleting antibodies against regulatory T cells (Tregs) significantly attenuated chemotherapy-mediated growth of untreated tumors, suggesting the role of Tregs in this process. Moreover, using FoxP3EGFP transgenic mice, we show that COX-2 inhibitor blocked intratumoral Tregs, indicating that Tregs are downstream to COX-2. Furthermore, PAF-R agonists were identified in perfusates of patients undergoing isolated limb chemoperfusion for melanoma with melphalan chemotherapy. Finally, various novel Ox-GPCs are identified after chemotherapy by mass spectrometry. These findings provide evidence for a novel and previously unappreciated pathway by which Ox-GPC PAF-R agonists produced as a by-product of chemotherapy modulate tumor growth via the inhibition of anti-tumor immunity. These studies might explain some instances of chemotherapy treatment failure and offer insights into potential therapeutic strategies that could enhance the overall anti-tumor effectiveness of chemotherapy
    corecore