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Abstract: Sensitive and accurate assessment of dermatologic inflammatory hyperemia in 
otherwise grossly normal-appearing skin conditions is beneficial to laypeople for monitoring 
their own skin health on a regular basis, to patients for looking for timely clinical 
examination, and to primary care physicians or dermatologists for delivering effective 
treatments. We propose that mathematical hyperspectral reconstruction from RGB images in a 
simple imaging setup can provide reliable visualization of hemoglobin content in a large skin 
area. Without relying on a complicated, expensive, and slow hyperspectral imaging system, 
we demonstrate the feasibility of determining heterogeneous or multifocal areas of 
inflammatory hyperemia associated with experimental photocarcinogenesis in mice. We 
envision that RGB-based reconstructed hyperspectral imaging of subclinical inflammatory 
hyperemic foci could potentially be integrated with the built-in camera (RGB sensor) of a 
smartphone to develop a simple imaging device that could offer affordable monitoring of 
dermatologic health. 
© 2017 Optical Society of America 

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (170.1470) Blood or tissue constituent 
monitoring; (170.1870) Dermatology; (170.3010) Image reconstruction techniques. 
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1. Introduction 

Skin cancer is the most common and frequently diagnosed type of cancer in the United States, 
with 5 million new cases annually in 2017 [1,2]. One in five Americans is at risk for skin 
cancer over the course of their lives [3]. In addition, actinic keratosis (also known as a solar 
keratosis), which is a premalignant lesion that may develop into non-melanoma skin cancer, 
has a reported prevalence of ~60% [4]. As a result, the average annual total cost for skin 
cancer has substantially increased by 126.2% from $3.6 billion (2002 – 2006) to $8.1 billion 
(2007 – 2011), compared to the increase of 25.1% for all other cancers [1]. In this respect, 
cost-effective risk assessment and prevention of skin cancer are of paramount importance in 
the clinical management. One possible strategy to achieve this objective is to make a simple 
and cost-effective imaging device available for personal monitoring of dermatologic health to 
detect early changes for delivering effective treatments. Such reliable yet affordable detection 
of skin abnormalities, which otherwise would be a grossly normal-appearing skin condition, is 
crucial to laypeople for monitoring their own dermatologic health status on a regular basis and 
to primary care clinicians/dermatologists for delivering effective prevention treatments in a 
timely manner. 

Inflammatory hyperemia, which can be detected by hemoglobin (Hgb) content in tissue, 
can be useful as an endogenous optical biomarker of increased risk for tumors within an area 
exposed to carcinogenesis [5–9]. Indeed, inflammation with increased hyperemia and/or 
angiogenesis has been observed in the tumor environment, often early before tumors are 
formed [7–10]. Specifically, inflammatory angiogenesis during early skin carcinogenesis is 
commonly seen in humans and animals [8,9,11]. Skin cancer is often derived from 
environmental exposures [12], which promote inflammatory hyperemia or angiogenesis. In 
our previous animal study, we demonstrated that a spatial and temporal analysis of focal areas 
of inflammatory hyperemia can predict not only whether tumors will form but also where the 
tumors will form during experimental photocarcinogenesis of non-melanoma skin cancer [6]. 
A recent clinical study with spatial frequency domain imaging has successfully shown that the 
optical properties including Hgb content of the skin can be used to characterize skin 
abnormalities from mild photodamage to actinic keratosis in a clinically relevant area [5]. 

There are several different label-free tissue imaging methods available, such as reflectance 
confocal microscopy, optical coherent tomography, diffuse optical tomography, spatial 
frequency domain imaging and laminar optical tomography [13–15]. In terms of blood 
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monitoring, laser speckle imaging is also useful for monitoring blood flow in an affordable 
imaging setup [16,17]. Using simultaneous 3-wavelength laser illumination, smartphone 
snapshot imaging is used for mapping skin pigments, including melanin and Hgb content 
[18]. In addition, spectroscopic analyses of light absorption of Hgb are commonly used to 
quantify Hgb content in biological tissue [6,19,20]. Specifically, Hgb has a unique 
characteristic absorption spectrum in the visible and NIR range [21]. For accurate and precise 
determination of Hgb content, common methods rely on the use of a spectrometer, an imaging 
spectrograph, or a tunable filter. On the other hand, the acquisition and processing of the 
spectral data using such hyperspectral imaging systems fundamentally limit the development 
of an uncomplicated, compact, rapid, and cost-effective imaging system. In this work, we 
propose to investigate whether it is feasible to determine spatial and temporal changes in Hgb 
content computed from RGB images without using a bulky hyperspectral imaging system. 

Fortunately, mathematical reconstruction of hyperspectral (with relatively high spectral 
resolution) or multispectral (with several spectral measurements) imaging from RGB image 
data acquired using a conventional 3-color (RGB) camera is currently an active area of 
research. Since the reconstruction of multispectral images from RGB images was originally 
developed in basic color sciences [22], this approach has recently received considerable 
attention in biomedical applications [23–28]. There are several methods available for 
reconstructing full reflectance spectra from RGB data, including pseudo-inverse, regression, 
Wiener estimation, and demultiplexing [23–25,29,30]. In particular, Wiener estimation 
depends largely on noise variances and spectral autocorrelation matrix calculations [31,32], 
requiring a priori knowledge of the spectral sensitivity of the sensor and the spectral power 
distribution of the illumination. On the other hand, multivariate regression does not require 
any extra information but only uses reflectance spectra and corresponding RGB camera 
responses for training models, making it more applicable in general. Thus, using multivariate 
regression, we apply a data-driven approach to reconstruct hyperspectral reflectance image 
data from RGB reflectance images that are acquired with a conventional camera or a 
smartphone. 

In this study, we report that the combination of an RGB-based hyperspectral 
reconstruction algorithm and a simple imaging setup can accurately and precisely determine 
heterogeneous or multifocal areas of inflammatory hyperemia on the animal skin in a 
preclinical setting. First, we conduct an experimental non-melanoma skin cancer study during 
early skin photocarcinogenesis. As a testing model, SKH-1 hairless mice are irradiated with a 
carcinogenic dose of UVB, which dominates the carcinogenic effect of sunlight as an 
environmental risk of skin cancer. Second, we construct a working prototype of dual imaging 
system that acquires hyperspectral image data and RGB image data under the identical 
illumination and detection configuration. Our intention is that eventually only RGB image 
data will be required to map out detailed spatial distributions of inflammatory hyperemia on 
the skin, simplifying the instrumentation, without requiring additional bulky and expensive 
hardware attachment. Third, we apply RGB-based hyperspectral reconstruction to visualize 
spatiotemporal changes in inflammatory hyperemia on a mesoscopic (between microscopic 
and macroscopic) imaging scale. Finally, we analyze spatial and temporal extent of Hgb 
content to characterize inflammatory hyperemia associated with photocarcinogenesis in mice. 

2. Materials and methods 

2.1 Mouse model of inflammatory hyperemia during early photocarcinogenesis 

We used 26 SKH-1 hairless albino mice (Charles River Laboratories) as a model system of 
both UVB irradiation and optical imaging. As SKH-1 hairless albino mice are 
immunocompetent and have numerous similarities with human skin [33,34], they are 
commonly used for experimental skin studies. In particular, they have a similar response of 
dermal inflammation often seen in humans, in part because of permanently arrested hair 
cycling in the catagen phase [33]. For an experimental group, we irradiated 20 mice with one 
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erythema dose of UVB (2,240 J/m2) three times per week and discontinued UVB irradiation 
after 10 weeks as previously described [6]. The cumulative UVB dose of 67.2 kJ/m2 was 
equivalent to a carcinogenic UVB dose [35]. For a control group, six mice did not receive any 
UVB irradiation. We imaged the surface of the dorsal skin of the mice over time until 17 
weeks after the cessation of UVB irradiation. To obtain sequential images from the identical 
areas over time, the skin of each mouse was tattooed with a small reference marker (~0.5 mm 
in size). Immediately before imaging of the dorsal surface of the mouse, the mice were lightly 
sedated using intraperitoneal injection of ketamine (50 mg/kg) and xylazine (5 mg/kg) or 
isoflurane inhalation (~4.0% isoflurane in oxygen) for immobilization. 

2.2 Telecentric imaging of biological tissue 

Given the highly diffusive nature of light propagation in biological tissue, it is always 
beneficial to remove the diffusive light component in tissue imaging in a simple and cost-
effective manner. In this respect, we have recently shown that a telecentric lens provides 
partial removal of the diffusive light to an extent in a simple mesoscopic imaging platform for 
tissue imaging setup [36]. A telecentric lens is a compound lens system modified with an 
additional aperture for achieving constant magnification and focus over a long distance [37]. 
Thus, telecentric lenses have often been used in the machine vision industry, because they 
remove the parallax error that makes closer objects appear to be larger than objects farther 
from the lens. Regarding tissue imaging, a small acceptance angle of ~0.1° of a telecentric 
lens was used to remove stray light in optical tomography (transmission mode) [38] and to 
overcome the curvature or distortion of the objective of interest in optical coherence 
tomography [39,40] and digital holographic microscopy [41]. However, the use of telecentric 
lenses for imaging biological tissue in a reflectance mode has not commonly been explored 
yet. 

Specifically, telecentric imaging in a reflection mode can offer directional angular gating 
[20,42,43], which suppresses a relative amount of unwanted scattered or diffusive light in 
biological tissue given that the scattering in biological tissue is highly anisotropic [20,43]. The 
main idea of telecentric imaging is that a small imaging acceptance angle in a telecentric lens 
can remove off-axis unwanted diffuse light, because the exit angle of the light diffused from 
biological tissue at the tissue surface is large. i) The imaging acceptance angle in the 
telecentric lens is characterized as a telecentric angle. A typical telecentric angle is as narrow 
as ~0.5°, compared with conventional lenses with an average angle of ~5°. ii) Light traveling 
in biological tissue has a high directional tendency, as described by a high value of the 
scattering anisotropy factor, which is defined by g = <cos θ>, in a range of g = 0.8 – 0.95. Our 
previous system achieved this feature by using a 4-f lens system with a limited image area of 
15 mm × 15 mm [6,20]. In our recent study [36], to quantify how much unwanted diffused is 
removed, we computed an image resolution of a black-and-white target embedded in tissue 
phantoms and mouse skin. Telecentric imaging showed ~25% enhancement in the image 
resolution, compared with conventional nontelecentric lens systems. In addition, the 
incorporation of a telecentric lens can enhance the field of view, the resolution, and the 
imaging depth for mesoscopic tissue imaging [36]. In particular, this simple optical design 
could easily be incorporated into an instrument of modest price for practical adoption. 

2.3 Imaging setup for hyperspectral and RGB imaging 

To obtain a reliable hyperspectral reconstruction matrix that converts RGB image data to 
hyperspectral imaging data, it is critical to have a dual data set (i.e., hyperspectral and RGB 
image data) from the same subject under the same imaging configuration, because reflectance 
(absorption and scattering) spectra are highly sensitive to illumination and detection 
geometries [44,45]. We note that this critical issue has often been ignored, resulting in 
inconsistent spectral reconstructions [25]. We carefully designed an imaging setup such that 
both hyperspectral and RGB image data can be acquired under the identical system 
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configuration, minimizing potential spectral discrepancies resulting from different 
illumination and detection configurations (Fig. 1). 

i) For hyperspectral imaging, an illumination beam from a white-light source (Xenon 
lamp) was coupled with a liquid crystal tunable filter (LCTF) (CRI VariSpec) in the delivery 
arm to scan a wavelength λ and was illuminated onto the sample via a ring illuminator. 
Specifically, diffuse light with a divergence angle of ~0.9° was illuminated on the mouse skin, 
avoiding specular surface reflection [36]. The light reflected from the sample at a distance 
(non-contact mode) was collected by a telecentric lens (magnification of 0.3 × , Schott 
Moritex Co.) and was recorded using a mono CCD camera. The telecentric lens imaged the 
mouse skin with a small acceptance (or telecentric) angle of ~0.5° [36]. The wavelength of 
LCTF was varied from 400 nm to 720 nm with a spectral resolution of 10 nm, generating a 
data set (x, y, and wavelength λ) for spectral analyses. ii) As for RGB image acquisition, 
LCTF was temporarily removed from the configuration to only allow the white light to 
illuminate the sample. For an RGB image sensor, we used a 3-color CCD camera embedded 
with Sony ICX 625. Overall, this imaging setup offered a relative large imaging area of 50 
mm × 50 mm with a typical pixel size of 100 µm and an imaging depth up to ~1 mm from the 
tissue surface, assuming the scattering path length of light in the mouse skin is 70 – 100 µm 
[36]. To control the imaging setup, we implemented automated image acquisition with Virtual 
Instrument using LabVIEW (National Instruments). The total acquisition time for 
hyperspectral and RGB imaging was approximately 4 minutes per mouse. After the 
acquisition of a raw image data set on the mouse skin, we also measured a background data 
set and a reference image data set using a reflectance standard (Labsphere) to compensate for 
the system response such that 

 ( ) ( ) ( )
( ) ( )
, ,   , ,   

, ,   .
, ,   , , ,  

raw background

reference background

I x y or RGB I x y or RGB
I x y or RGB

I x y or RGB I x y or RGB

λ λ
λ

λ λ
−

=
−

 (1) 

 

Fig. 1. Schematics of the dual imaging setup to acquire hyperspectral and RGB image data 
under the identical illumination and detection configurations, consisting of a telecentric lens. 
The illumination beam is coupled with a liquid crystal tunable filter (LCTF) to generate 
hyperspectral imaging data of the light reflected from the dorsal surface of a mouse. For RGB 
imaging, LCTF is temporally removed and a 3-color CCD camera is used. Inset: Spectral 
response of the 3-color CCD (Sony ICX625) used in this imaging setup. Although the 
telecentric lens system is not required, this offers back-directional angular gating for 
anisotropic scattering media (i.e., biological tissue), in part discarding unwanted scattered or 
diffusive light in biological tissue [20,42,43]. 

2.4 Reconstruction of hyperspectral image data from RGB 

We previously developed a hyperspectral image reconstruction method that can reliably 
predict detailed hyperspectral information from RGB data obtained from a conventional 3-
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color (RGB) CCD camera [27,28]. In particular, we successfully tested this method using 
plants, in which the main pigment is chlorophyll [28], and redness in the eyelid of animals for 
anemia detection [27]. In this study, we extended this method to an animal model of skin 
carcinogenesis in which Hgb is the major pigment in the tissue and is an intermediate optical 
biomarker of inflammatory hyperemia. The RGB-based reconstruction algorithm for 
generating a full spectrum information of mouse skin can be summarized as follows: First, an 
RGB signal from a 3-color camera can be modeled such that 

 3 1 3 1 3 1,N Nx S r e× × × ×= +  (2) 

where x  is a 3 1 ×  vector corresponding to RGB signals, S  is a 3 N×  matrix of the RGB 
spectral response of the 3-color sensor (Sony ICX625), r  is an 1 N ×  vector that has a 
spectral reflectance intensity as a function of λ, and e  is a 3 1 ×  vector of the system noise 
with zero mean. N  indicates the number of wavelengths; because LCTF in our imaging setup 
was varied from 400 nm to 720 nm with a spectral step of 10 nm, N  = 33. The spectral 
response of the 3-color CCD sensor (inset of Fig. 1) was used to obtain RGB signals from the 
measured reflectance spectra using Eq. (2). Second, once RGB signals are obtained for each 

spectrum r , ˆ
m NR ×  and 3mX ×  can be constructed by stacking the reflectance spectra 1Nr ×  and 

RGB data 3 1x ×  such that 

 3 3
ˆ ,m N m NXR T× × ×=  (3) 

where ˆ
m NR ×  and 3mX ×  are the collections of the hyperspectral reflectance and RGB data, 

respectively. In our study, m is the number of different cases that is a product of the number 
of pixels of the camera and the number of animal data sets (i.e., number of mice × number 
time-points of sequential images). With this data set, we estimated the transformation matrix 

3 NT ×  that can convert RGB data into hyperspectral reflectance data. To solve Eq. (3) for the 

unknown 3 NT ×  and to improve the prediction accuracy for the hyperspectral reconstruction, 

we utilized multivariate 2nd order polynomial regression. Finally, we predicted a reflectance 
spectrum r̂  from a new RGB signal x  by multiplying x  by T . We note that a new testing 
set was employed to strengthen the validation process of the reconstruction model, in which 
the testing data set did not include any training data sets. Specifically, given the mouse data 
set, we built the reconstruction model using 100 mouse skin image data taken over time from 
26 mice (i.e., the training data set). In addition, we separately employed unused 94 mouse 
skin image data from 12 mice (i.e., the test data set) to evaluate the performance of the model. 
Thus, we were able to avoid potential overfitting of the model by not reusing the same data 
set for both training and testing. 

2.5 Spectroscopic quantification of hemoglobin (Hgb) content 

Once hyperspectral reflectance image data were reliably reconstructed from RGB image data, 
we quantified Hgb content on the mouse skin using a spectral absorption analysis that 
estimates Hgb levels in the individual pixel of the imaged area. There are several spectral 
analysis methods available and some of them assume that light-scattering spectra would be an 
exponential decay or a power-law decay function over the wavelength. In this current study, 
we made use of our previously developed method [20], in which the spectral shape from the 
scattering contribution is modeled as a linear decay function of the wavelength. The sum of 
the difference between the modeled spectrum (i.e., no absorption) and the measured spectrum 
within a spectral range of 510 – 620 nm was used to estimate Hgb content. 

We ensured that this spectral analysis offered reliable quantification of Hgb content in 
tissue phantoms in a similar manner of our previous studies [6,20]. Specifically, to reliably 
extract a value of Hgb content from a spectral absorption area in our current imaging setup, 
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we refined the previous developed calibration curve converting the spectral absorption area to 
the corresponding total Hgb content using a nonlinear least-square solver. For this refinement, 
we conducted additional tissue phantom studies consisting of aqueous suspensions of 
microspheres (i.e., scatters) and lyophilized Hgb (i.e., absorbers); the scattering properties 
(i.e., transport mean free path length and anisotropy factor) of the scattering media were 
estimated using the Mie calculations [46]. Polystyrene microspheres with a nominal diameter 
of 0.36 and 0.50 mμ  (Thermo Fisher Scientific Inc.) were used, resulting in the scattering 

path lengths of 673 and 305 mμ  and the anisotropy factor of 0.80 and 0.85, respectively. For 

each scattering medium, Hgb content was gradually increased by adding lyophilized Hgb 
(Sigma-Aldrich) into the scattering suspension from 0 to ~3.3 mg/mL. For each step, 
hyperspectral reflectance signals from the tissue phantoms were recorded using the imaging 
setup. 

2.6. Statistical analysis of longitudinal data 

We used two-stage analyses (also known as response feature analyses and NIH method), in 
which multiple responses on each animal are reduced to a single response over time and then 
an analysis of variance (ANOVA) or nonparametric methods equivalent of ANOVA are 
applied [47]. For the single response over time, linear regression analyses were used to 
evaluate slope estimates between Hgb variables and time. The assumptions of normality and 
uniform variance for the parametric analyses were also checked. We performed the statistical 
analyses using Stata 13. 

 

Fig. 2. (a) and (b) Representative 3-dimensional data structures ( ), ,x y λ  of hyperspectral 

reflectance images for a UVB-irradiated mouse skin at 17 weeks after the cessation of UVB 
irradiation and a non-irradiated (control) mouse skin, respectively. (c) and (d) Corresponding 
reflectance spectra originally measured (red solid line) and numerically reconstructed from 
RGB signals (blue circle) averaged from the UVB-irradiated and control mouse skin, 
respectively. 
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3. Results 

3.1 Hyperspectral image data reconstructed from RGB image data 

Using the training data set from 100 mouse skin image data, we initially evaluated that our 
hyperspectral reconstruction method with polynomial regression can reliably reconstruct 
detailed spectral information. For this initial evaluation, we conducted numerical experiments 
for predicting hyperspectral reflectance data on the mouse skin using RGB data. After 
obtaining the hyperspectral image data using LCTF, we applied the spectral response of the 3-
color CCD camera (Sony ICX 625 and the inset of Fig. 1) to numerically generate RGB 
image data that theoretically correspond to RGB image data directly acquired from the 3-color 
CCD camera. Figure 2(a) and 2(b) illustrate three-dimensional data structures of hyperspectral 
reflectance images made up with two-dimensional spatial information ( , )x y  and one-

dimensional spectral information λ  for representative UVB-irradiated and non-irradiated 
mice, respectively. Figure 2(c) and 2(d) show the corresponding average reflectance spectra 
that were directly measured (red solid line) and reconstructed from the RGB data (blue 
circles) for the UVB-irradiated and non-irradiated mouse skin. The unique optical signature of 
Hgb around 420, 530, and 570 nm in the visible range is clearly seen in the average 
reflectance spectra of the imaged tissue (Fig. 2(d)). Compared to the control mouse in Fig. 
2(d), the UVB-irradiated one in Fig. 2(c) also shows that the average reflectance intensity of 
the UVB-irradiated mouse is lower than that of the control mouse, due to the light absorption 
of Hgb. This representative case supports the idea that the reconstructed spectral reflectance 
from the RGB data can significantly resemble the originally measured reflectance spectra. 

To evaluate the resemblance between the measured reflectance spectra and the 
reconstructed ones for the entire data set, we conducted a statistical analysis using goodness-
of-fit metrics: coefficient of determination R2 and root mean square error (RMSE). The 
average RMSE from 94 mouse image data was 0.008 (min = 0.003 and max = 0.021) and the 
average R2 was 0.995 (min = 0.975 and max = 0.999). Furthermore, Fig. 3(a) describes errors 
of spectral reconstruction from RGB data over λ  and 95% confidence intervals of mean 
differences (dark blue line) between the originally measured reflectance spectra and the 
reconstructed reflectance spectra at each λ . In Fig. 3(b), the goodness-of-fit metrics from 94 
mouse image data taken from 12 mice over time, which were used as a new testing set, clearly 
support reliable prediction of the spectral reconstruction with R2 > 0.98 and RMSE < 0.02. 

 

Fig. 3. Performance characteristics of hyperspectral reconstruction from RGB data. (a) 95% 
confidence intervals of mean differences (dark blue line) between the original reflectance 
spectra and the reconstructed spectra at each wavelength. (b) Goodness-of-fit metrics of R2 and 
RMSE from 94 mouse skin image data taken over time from 12 mice used as a testing data set. 
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Fig. 4. (a) White-light image of a representative mouse skin. Four small dots (forming a square 
shape) are tattoo marks for sequential imaging. (b) and (c) Hgb content maps are computed 
from the hyperspectral image data and the RGB image data using the hyperspectral 
reconstruction method, respectively. (d) Histogram of 2D correlation coefficients between Hgb 
content maps using the original hyperspectral image data and the reconstructed hyperspectral 
image data from RGB data for 94 mouse skin images from 12 mice that are used as a separate 
testing data set. 

3.2 Experimental comparisons of Hgb maps generated from the dual imaging setup 

Using the dual imaging setup, we compared Hgb maps directly computed from the 
hyperspectral image data (i.e., hyperspectral imaging mode) and Hgb maps computed from 
the reconstructed hyperspectral image data from the measured RGB image data (i.e., RGB 
imaging mode). These data sets were acquired from the same animal under the same 
illumination and detection configuration as depicted in Fig. 1. Due to the extended imaging 
time, only six mice were utilized for the dual imaging setup as a pilot test. As shown in the 
representative case of Fig. 4, the Hgb map from the RGB image is significantly similar to that 
from the hyperspectral image data. In Fig. 4(b) and 4(c), the tumor formation can clearly be 
located by the area with the high Hgb level in both Hgb maps. For quantitative evaluation of 
the similarity, a calculated 2D correlation coefficient C2D between Fig. 4(b) and 4(c) resulted 
in C2D = 0.99. This representative case supports the reliability of Hgb content imaging from 
the reconstructed hyperspectral image data. 

We further evaluated similarities of Hgb maps obtained from the hyperspectral image data 
and the numerically generated RGB image data. We used a separate testing set (94 mouse 
skin images) from 12 mice to avoid potential overfitting of the hyperspectral reconstruction 
model, in which the testing data did not include any training data obtained from 26 mice. In 
Fig. 4(d), the histogram of two-dimensional correlation coefficients calculated from 94 mouse 
skin images from 12 mouse samples show that subclinical focal areas of inflammatory 
hyperemia in the tissue microenvironment can be sensitively and accurately extracted using 
the RGB data, taking advantage of the hyperspectral reconstruction method built on a prior 
information. 

3.3 Visual tumor count and histology of UVB-irradiated mice 

Figure 5(a) shows a significant increase in durable tumors (tumor size > 0.5 – 1 mm) for 
UVB-irradiated mice after the cessation of UBV irradiation. In contrast, non-UVB irradiated 
mice failed to develop tumors. Indeed, the UVB irradiation for 10 weeks consistently resulted 
in initial tumor formation after the final UVB irradiation. In the histology analysis of later 
photocarcinogenesis in Fig. 5(b), the Hgb hotspots were significantly associated with 
alterations in the tissue microenvironments, in particular stromal hyperemia. Specifically, the 
areas of high Hgb content (i.e., hotspots) exhibited i) epidermal hyperplasia, ii) increased 
inflammation (red blood cells), iii) dermal expansion and follicular hyperplasia in the dermis, 
and iv) loss of deep adipose tissue. 
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Fig. 5. (a) Visible tumor multiplicity in UVB-irradiated mice counted as average numbers of 
microscopically observed tumors per mouse as a function of weeks after the cessation of UVB 
irradiation. (b) Microscopy images (200 × ) of H&E stain of hyperemic foci at approximately 
20 weeks after the cessation of UVB irradiation. Areas of high Hgb content have epidermal 
hyperplasia and exhibit inflammatory infiltrate and dermal expansion. 

3.4 Spatiotemporal changes in inflammatory hyperemic foci in tissue 
microenvironment 

We investigated spatiotemporal changes in multifocal areas of inflammatory hyperemia from 
12 mice used as the testing set during cutaneous photocarcinogenesis. Hgb maps were 
computed over time after the cessation of UVB irradiation, using both the original 
hyperspectral image and the reconstructed one from the RGB data. The visualization of Hgb 
content during the early photocarcinogenesis shows that inflammatory hyperemia preceded 
the visible tumor occurrence, specifically as shown in 4 or 6 weeks in Fig. 6. The multifocal 
areas of increased inflammatory hyperemia were identified, which persisted or formed over 
the ensuing weeks from a representative UVB-irradiated mouse. Compared to the control 
mouse in Fig. 7, the UVB irradiated mouse shows a significant increase in the area of high 
Hgb over time after stopping the UVB irradiation as depicted in Fig. 6(b) and 6(c). These 
persistent focal areas of inflammatory hyperemia seem to expand over time. We note that the 
hyperemic areas during early photocarcinogenesis were not easily observed in the 
conventional photographs, due to the lack of the contrast as shown in Fig. 6(a). Also, 
subsequent tumor formation appeared within the focal areas of the increased inflammatory 
hyperemia. Overall, tumor-associated hyperemia can sensitively and accurately be visualized 
using our RBG-based hyperspectral imaging of Hgb as markedly elevated Hgb content. 

For more quantitative assessment of Hgb maps from 94 mouse skin image data from 12 
mice, we set up a threshold of Hgb content to 2.0 mg/mL. This range of threshold value was 
determined in our previous study for effectively delineating Hgb hotspots in the 
photocarcinogenesis of SHK-1 mice [6]. Then, we computed Hgb hotspot areas above this 
threshold and average Hgb content within the corresponding Hgb hotspot areas over time. The 
quantitative analyses shown in Fig. 8(a) and 8(b) support the same observation that the areas 
of inflammatory hyperemia not only persisted before tumor formation but also expanded in 
size up to tumor formation over time after the cessation of UVB irradiation. For Hgb content 
computed from the hyperspectral image data, the slope estimates of the linear regression for 
hotspot areas and Hgb content over time in UVB-irradiated mice were statistically significant 
with p-values of 0.025 and 0.017, respectively. The differences in the hotspot area and Hgb 
content slopes between the groups were statistically significant with p-values of 0.007 and 
0.012, respectively. In other words, the difference of multifocal areas of inflammatory 
hyperemia between the UVB-irradiated and control groups was statistically significant. 
Similarly, for Hgb content computed from the RGB image data using the hyperspectral 
reconstruction method, the slope estimates of hotspot areas and Hgb content in UVB-
irradiated mice returned p-values of 0.105 and 0.015, respectively. The higher p-value for the 
slope estimate of hotspot areas may be attributable to the larger variation of hotspot areas 
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from the RGB image data as shown in Fig. 8(b). Similar to Fig. 8(a), the differences in the 
hotspot and Hgb content slopes between the groups, computed from the reconstructed 
hyperspectral image data, were statistically significant with p-values of 0.028 and 0.005, 
respectively. 
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Fig. 6. Spatiotemporal extent in Hgb content maps of UVB-induced hyperemic foci following 
different weeks after the cessation of carcinogenic UVB irradiation from the same mouse in a 
sequential manner. (a) Photographs obtained using a digital camera. During early 
photocarcinogenesis (i.e., 4 – 9 weeks after the cessation of UVB irradiation), the conventional 
photographs are not sensitive to the changes of hyperemia. (b) Hgb maps computed using the 
hyperspectral image data from the UVB-irradiated mouse skin. (c) Hgb maps computed using 
the reconstructed hyperspectral image data from the RGB data. (b) and (c) show the significant 
similarity due to the reliable hyperspectral reconstruction. In both cases, focal areas of intense 
hyperemia precede tumor formation, indicating sites at high risk for tumor occurrence; the 
hyperemic areas not only persist, but also suggest a link between dermal hyperemia and 
ongoing epidermal tumor development. 
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Fig. 7. Hgb content maps from a representative non-irradiated mouse skin from the same mice 
in a sequential manner. (a) Photographs obtained using a digital camera from the control 
mouse. (b) Hgb maps computed using the hyperspectral image data. (c) Hgb maps computed 
using the reconstructed hyperspectral data from RGB data for the same mouse. The significant 
similarity between (b) and (c) in the case of low Hgb content also supports the reliability of 
hyperspectral reconstruction. 
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Fig. 8. (a) Analyses of Hgb content maps computed from the hyperspectral reflectance image 
data. After thresholding hotspot areas with Hgb content more than 2.0 mg/mL, mean areas of 
hyperemic foci are calculated. The areas of high Hgb content expand after the cessation of 
UVB irradiation in UVB-irradiated mice but not in control mice (i.e., non UVB-irradiated). 
The difference of multifocal hyperemic areas between the UVB-irradiated and control groups 
is statistically significant with p-value = 0.007. Average Hgb content within the hotspots is 
determined for each mouse at each time-point. (b) Corresponding analyses of Hgb content 
maps computed from the RGB image data, using the hyperspectral reconstruction method. The 
Hgb content analyses using the RGB-based hyperspectral reconstruction significantly resemble 
the Hgb analyses using the original hyperspectral data. All of the error bars are standard 
deviations. 

4. Discussions 

Several smartphone applications or handheld dermoscopy devices (e.g., FotoFinder, 
DermLite, SIAscope, and MelaFind) are already available for analyzing moles and pigmented 
spots for skin cancer, in particular melanoma, detection. There are also several smartphone-
based Hgb measurement technologies (e.g., ToucHb, HemoGlobe, Eyenaemia, and 
HemaApp) for anemia. However, smartphone-based Hgb imaging of skin inflammation has 
not yet been commercially available, to the extent of our knowledge. In this current study, we 
demonstrated mathematically reconstructed hyperspectral reflectance imaging fed with RGB 
image data for reliably mapping out subclinical inflammatory hyperemic foci associated with 
photocarcinogenesis 

Our current study has several limitations. Simultaneous acquisition of hyperspectral and 
RGB image data was not possible. The current dual imaging setup avoided potential spectral 
variations resulting from the light scattering contribution, because both hyperspectral image 
and RGB image data were acquired under the identical illumination and detection 
configuration, but still acquired the data in a sequential manner with a time delay; RGB image 
data were taken after the acquisition of hyperspectral image data, causing a time delay in the 
current setup. Considering potential clinical implication in humans, the relatively long 
acquisition time of ~4 minutes may cause involuntary movement to negatively affect the 
quality of raw image data. In this respect, we are currently developing a next generation of 
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dual imaging system that allows for concurrent and simultaneous acquisition of hyperspectral 
and RGB image data. 

The hyperspectral reconstruction from originally measured RGB image data may involve 
technical adjustment issues, such as different pixel sizes between mono and RGB cameras and 
RGB color interpolation of adjacent pixels. Indeed, most common 3-color sensors (e.g., Bayer 
filter sensor) interpolate missing color information in selected pixel positions using a 
demosaicing algorithm [48]. Each pixel records only of the RGB colors in a format of a grid 
or a 3-color checkerboard. On the other hand, a Foveon X3 sensor captures all of the three 
colors within the same pixel. The manufacturer claims that Foveon X3 sensors can avoid this 
limitation, improving the RGB image quality. Thus, a Foveon X3 sensor would be more ideal 
for our RGB-based hyperspectral reconstruction. 

The training-based hyperspectral reconstruction method requires a prior hyperspectral 
image data of interest and heavily depends on the quality of training data and the similarity of 
testing data to training data sets. Even though SKH-1 mouse skin has similarities with human 
skin, our current conversion matrix from RGB to hyperspectral image data would be limited 
only to SKH-1 mouse skin samples. Although the murine model is highly valuable to provide 
detailed information on human inflammation, there are potential differences between murine 
and human skin. The human dermis is relatively thicker and has fewer hair follicles than the 
mouse dermis. The human epidermis is generally 6 - 10 cell layers thick (> 100 μm) while the 
murine epidermis consists of 2 - 3 cell layers [49]. For visualization of spatiotemporal 
changes in inflammatory hyperemia in humans, training hyperspectral data from humans with 
different degrees of hyperemia under several clinical scenarios would be necessary. A human 
study that we are currently considering is to image skin areas of persistent focally increased 
Hgb content in individuals with photodamaged skin and sun-protected skin. In this case, the 
degree of photodamage can be assessed using a clinically utilized 9-point photonumeric 
McKenzie photodamage scale [50]. We note that this limitation applies to any training-based 
reconstruction methods, involving an appropriate selection of samples. 

5. Conclusion 

We have shown that the unique combination of hyperspectral reconstruction and telecentric 
reflectance imaging can serve as a simple and affordable imaging system to visualize 
quantitative spatiotemporal changes of subclinical inflammatory hyperemia in a relatively 
large tissue area. We have conducted the comparative investigation of Hgb content maps 
between the hyperspectral and RGB image data at different time-points of 
photocarcinogenesis to validate our imaging method in the experimental setting. The current 
hyperspectral reconstruction method could potentially be extended to examine the tissue 
microenvironment in humans, when a training data set is readily available. Because 
inflammation is a common component of many dermatologic abnormalities, accurate and 
reliable detection of inflammatory hyperemia will be beneficial to the clinical management. 
The main advantages of RGB-based hyperspectral reconstruction imaging of Hgb are i) the 
sensitivity of Hgb content, ii) the simplicity for instrumentation, and iii) the high temporal 
resolution of data acquisition, all of which suggest that this technology could easily be 
incorporated into an instrument of modest price such as a smartphone. Indeed, as the 
smartphone ownership is common, the ‘right’ technology should take advantage of the built-
in camera (i.e., RGB sensor) in a smartphone without requiring additional bulky and 
expensive hardware attachment. We expect that such noninvasive, cost-effective, and user-
friendly imaging devices will play a critical role in initial screening and risk-stratification for 
personalized monitoring of inflammatory skin diseases, leading to timely clinical 
examination. 
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