1,357 research outputs found

    A quality integrated spectral minutiae fingerprint recognition system

    Get PDF
    Many fingerprint recognition systems are based on minutiae matching. However, the recognition accuracy of minutiae-based matching algorithms is highly dependent on the fingerprint minutiae quality. Therefore, in this paper, we introduce a quality integrated spectral minutiae algorithm, in which the minutiae quality information is incorporated to enhance the performance of the spectral minutiae fingerprint recognition system. In our algorithm, two types of quality data are used. The first is the minutiae reliability, expressing the probability that a given point is indeed a minutia; the second is the minutiae location accuracy, quantifying the error on the minutiae location. We integrate these two types of quality information into the spectral minutiae representation algorithm and achieve a decrease of 1% in equal error rate in the experiment

    A Comparison of Hand-Geometry Recognition Methods Based on Low- and High-Level Features

    Get PDF
    This paper compares the performance of hand-geometry recognition based on high-level features and on low-level features. The difference between high- and low-level features is that the former are based on interpreting the biometric data, e.g. by locating a finger and measuring its dimensions, whereas the latter are not. The low-level features used here are landmarks on the contour of the hand. The high-level features are a standard set of geometrical features such as widths and lengths of fingers and angles, measured at preselected locations

    Spectral representation of fingerprints

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with a template protection scheme, which requires a fixed-length feature vector. This paper introduces the idea and algorithm of spectral minutiae representation. A correlation based spectral minutiae\ud matching algorithm is presented and evaluated. The scheme shows a promising result, with an equal error rate of 0.2% on manually extracted minutiae

    Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption

    Get PDF
    In recent years, the protection of biometric data has gained increased interest from the scientific community. Methods such as the fuzzy commitment scheme, helper-data system, fuzzy extractors, fuzzy vault, and cancelable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives or error-correcting codes (ECCs) and use a binary representation of the real-valued biometric data. Hence, the difference between two biometric samples is given by the Hamming distance (HD) or bit errors between the binary vectors obtained from the enrollment and verification phases, respectively. If the HD is smaller (larger) than the decision threshold, then the subject is accepted (rejected) as genuine. Because of the use of ECCs, this decision threshold is limited to the maximum error-correcting capacity of the code, consequently limiting the false rejection rate (FRR) and false acceptance rate tradeoff. A method to improve the FRR consists of using multiple biometric samples in either the enrollment or verification phase. The noise is suppressed, hence reducing the number of bit errors and decreasing the HD. In practice, the number of samples is empirically chosen without fully considering its fundamental impact. In this paper, we present a Gaussian analytical framework for estimating the performance of a binary biometric system given the number of samples being used in the enrollment and the verification phase. The error-detection tradeoff curve that combines the false acceptance and false rejection rates is estimated to assess the system performance. The analytic expressions are validated using the Face Recognition Grand Challenge v2 and Fingerprint Verification Competition 2000 biometric databases

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    A Fast Minutiae-Based Fingerprint Recognition System

    Get PDF
    The spectral minutiae representation is a method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require as an input a fixed-length feature vector. Based on the spectral minutiae features, this paper introduces two feature reduction algorithms: the Column Principal Component Analysis and the Line Discrete Fourier Transform feature reductions, which can efficiently compress the template size with a reduction rate of 94%. With reduced features, we can also achieve a fast minutiae-based matching algorithm. This paper presents the performance of the spectral minutiae fingerprint recognition system and shows a matching speed with 125 000 comparisons per second on a PC with Intel Pentium D processor 2.80 GHz and 1 GB of RAM. This fast operation renders our system suitable as a preselector for a large-scale fingerprint identification system, thus significantly reducing the time to perform matching, especially in systems operating at geographical level (e.g., police patrolling) or in complex critical environments (e.g., airports)

    Strain characterization of FinFETs using Raman spectroscopy

    Get PDF
    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscop

    Spin-1 Antiferromagnetic Heisenberg Chains in an External Staggered Field

    Full text link
    We present in this paper a nonlinear sigma-model analysis of a spin-1 antiferromagnetic Heisenberg chain in an external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for the staggered magnetization curve, the core of the paper is a novel calculation, at the tree level, of the Green functions of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon continuum appears as well whose weight is a stedily increasing function of the applied field, while the weight of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is derived and discussed. A detailed comparison with the present experimental and numerical (DMRG) status of the art as well as with previous analytical approaches is also made.Comment: 23 pages, 3 figures, LaTe

    Riverine Carbon Cycling Over the Past Century in the Mid-Atlantic Region of the United States

    Get PDF
    Rivers are an important component of the terrestrial-aquatic ocean continuum as they serve as a conduit for transporting carbon from the land to the coastal ocean. It is essential to track the fate of this carbon, including how much carbon is buried in the riverbed, outgassed to the atmosphere, and exported to the ocean. However, it is often difficult to quantify these carbon transport processes on the watershed scale because observational data obtained by field surveys can only be used to estimate the magnitude of these processes at distinct points. In this study, we used a coupled terrestrial-aquatic ecosystem model to assess the century-long full carbon budget of the riverine ecosystem across the watersheds of Chesapeake Bay and Delaware Bay. In addition, we examined the individual and combined impacts of climate change and anthropogenic activities on these terrestrial ecosystems and the resultant CO2emissions of their associated rivers. We found that climate variability and land conversion (from cropland to impervious surfaces and forest) are the most important factors governing the long-term change in riverine carbon dynamics. We also highlighted the importance of riverine CO2 emissions in the overall regional carbon budget

    Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay

    Get PDF
    The Chesapeake Bay is a large coastal-plain estuary that has experienced considerable anthropogenic changeover the past century. At the regional scale, land-use change has doubled the nutrient input from rivers and led to an increase in riverine carbon and alkalinity. The bay has also experienced global changes, including the rise of atmospheric temperature and CO2. Here we seek to understand the relative impact of these changes on the inorganic carbon balance of the bay between the early 1900s and the early 2000s. We use a linked land–estuarine–ocean modeling system that includes both inorganic and organic carbon and nitrogen cycling. Sensitivity experiments are performed to isolate the effect of changes in (1) atmospheric CO2, (2) temperature,(3) riverine nitrogen loading and (4) riverine carbon and alkalinity loading. Specifically, we find that over the past century global changes have increased ingassing by roughly the same amount (∼30 Gg-C yr−1) as has the increased riverine loadings. While the former is due primarily to increases in atmospheric CO2, the latter results from increased net ecosystem production that enhances ingassing. Interestingly, these increases in ingassing are partially mitigated by increase temperatures and increased riverine carbon and alkalinity in-puts, both of which enhance outgassing. Overall, the bay has evolved over the century to take up more atmospheric CO2 and produce more organic carbon. These results suggest that over the past century, changes in riverine nutrient loads have played an important role in altering coastal carbon budgets, but that ongoing global changes have also substantially affected coastal carbonate chemistry
    corecore