28 research outputs found

    Sea otters in Southeast Alaska: subsistence harvest and ecological effects in seagrass communities

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2020The recovery of sea otters (Enhydra lutris) to Southeast Alaska is a conservation success story, but their increasing population raises questions about sea otter population dynamics and the ecological role of this top-level predator. In Chapter 1, we addressed these questions by investigating patterns and population effects of subsistence sea otter harvest. Subsistence harvest reduced populations at a small scale, with potential to slow or stop population growth, but across Southeast Alaska the population continues to grow, even with an average 3% subsistence harvest rate. In Chapters 2 and 3 we investigated the ecological role of sea otters in seagrass (Zostera marina) communities. When we tested for generality in a sea otter - seagrass trophic cascade across a large spatial scale in Southeast Alaska, we found a positive relationship between sea otters and seagrass. However, we found no evidence of a relationship between crabs and epifauna, suggesting that the ecological mechanisms in Southeast Alaska may differ from other regions. Our comparison of carbon and nitrogen stable isotopes (SI) to assess the role of sea otters on trophic structure and energetic pathways of seagrass beds found little effect of sea otters in overall community trophic niche space, suggesting similar carbon sources and food chain length in seagrass meadows regardless of sea otters. Conversely, the FA profiles of diverse consumer suggest variation in dietary sources with and without sea otters. This result suggests that the trophic cascade may not be the only or primary energetic pathway in Southeast Alaska seagrass communities. In all, our studies have revealed that sea otters in Southeast Alaska are linked to both people and a common Southeast Alaska nearshore habitat, seagrass. These results describe the varied interactions of a recovering top predator and highlight a need to consider these diverse interactions in resource management, conservation, and ecological research.Alaska Sea Grant (project R/111-03), National Oceanic and Atmospheric Administration (grant NA14OAR4170079), National Science Foundation Biological Oceanography grant (#1635716), Coastal Science, Engineering and Education for Sustainability (SEES) grant (#1600230), National Science Foundation Graduate Research Fellowship, North Pacific Research Board Graduate Student Research Award, American Fisheries Society Steven Berkeley Marine Conservation Fellowship, Lerner-Grey Fund for Marine ResearchGeneral Introduction -- Chapter 1: Location specific factors influence patterns and effects of subsistence sea otter harvest in Southeast Alaska -- Chapter 2: Testing the generality of apex predator-mediated trophic cascades in seagrass meadows -- Chapter 3: Sea otter effects on trophic structure of seagrass communities in Southeast Alaska -- General Conclusion -- Appendices

    Sea otter effects on trophic structure of seagrass communities in southeast Alaska

    Get PDF
    Previous research in southeast Alaska on the effects of sea otters Enhydra lutris in seagrass Zostera marina communities identified many but not all of the trophic relationships that were predicted by a sea otter-mediated trophic cascade. To further resolve these trophic connections, we compared biomass, carbon (δ13C) and nitrogen (δ15N) stable isotope (SI), and fatty acid (FA) data from 16 taxa at 3 sites with high and 3 sites with low sea otter density (8.2 and 0.1 sea otters km−2, respectively). We found lower crab and clam biomass in the high sea otter region but did not detect a difference in biomass of other seagrass community taxa or the overall community isotopic niche space between sea otter regions. Only staghorn sculpin differed in δ13C between regions, and Fucus, sugar kelp, butter clams, dock shrimp, and shiner perch differed in δ15N. FA analysis indicated multivariate dissimilarity in 11 of the 15 conspecifics between sea otter regions. FA analysis found essential FAs, which consumers must obtain from their diet, including 20:5ω3 (EPA) and 22:6ω3 (DHA), were common in discriminating conspecifics between sea otter regions, suggesting differences in consumer diets. Further FA analysis indicated that many consumers rely on diverse diets, regardless of sea otter region, potentially buffering these consumers from sea otter-mediated changes to diet availability. While sea otters are major consumers in this system, further studies are needed to understand the mechanisms responsible for the differences in biomarkers between regions with and without sea ottersWe thank Tiffany Stephens, Maggie Shields, Melanie Borup, Ashely Bolwerk, Nicole LaRoche, Tom Bell, Michael Stekoll and the rest of the Apex Predators, Ecosystems and Community Sustainability (APECS) team and 26 Earthwatch volunteers for assistance in the field and laboratory. Special thanks to Reyn Yoshioka, Natalie Thompson, the Coastal Trophic Ecology Lab, and Oregon Institute of Marine Biology for their assistance with fatty acid extractions, Melissa Rhodes-Reese at University of Alaska Southeast for water nutrient analysis, and Matthew Rogers and NOAA Auke Bay Laboratories for assistance with stable isotope analyses. This study was funded by the National Science Foundation (NSF #1635716, #1600230 to G.L.E.), through the generous support of Earthwatch, and a 56 NSF Graduate Research Fellowship, a North Pacific Re - search Board Graduate Student Research Award, an American Fisheries Society Steven Berkeley Marine Conservation Fellowship, and a Lerner Gray Memorial Fund (to W.W.R). This study was completed in partial fulfillment of the requirements for W.W.R.’s PhD at the University of Alaska Fairbanks and we thank committee members Dr. Franz Mueter and Dr. Anne Beaudreau for their comments on this project and the manuscript. Finally, we thank the 3 anonymous reviewers whose comments greatly improved the manuscript. This study was conducted on the traditional lands and waters of the Alaska Native Tlingit and Haida peoples. We are grateful for our access to these spaces and benefited from conversations and support from the members of Tribal communities and governments.Ye

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe

    Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    Get PDF
    BACKGROUND:The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. METHODOLOGY/PRINCIPAL FINDINGS:We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. CONCLUSIONS/SIGNIFICANCE:This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family

    Simplistic vs. Complex Organization: Markets, Hierarchies, and Networks in an 'Organizational Triangle'

    Get PDF
    Transaction cost economics explains organizations in a simplistic ‘market-vs.-hierarchy’ dichotomy. In this view, complex real-world coordination forms are simply considered ‘hybrids’ of those ‘pure’ and ideal forms, thus being located on a one-dimensional ‘line’ between them. This ‘organizational dichotomy’ is mainly based on relative marginal transaction costs, relative lengths of value-added chains, and ‘rational choice’ of coordination form. The present paper, in contrast, argues that pure ‘market’ and ‘hierarchy’, even including their potential hybrids, are a theoretically untenable and empirically void set. Coordination forms, it is argued, have to be conceptualized in a fundamentally different way. A relevant ‘organizational space’ must reflect the dimensions of a complex world such as dilemma-prone direct interdependence, resulting in strong strategic uncertainty, mutual externalities, collectivities, and subsequent emergent process. This, in turn, will lead either to (1) informally institutionalized, problem-solving cooperation (the instrumental dimension of the institution) or (2) mutual blockage, lock-in on an inferior path, or power- and status-based market and hierarchy failure (the ceremonial dimension of the institution). This paper establishes emergent instrumental institutionalized cooperation as a genuine organizational dimension which generates a third ‘attractor’ besides ‘market’ and ‘hierarchy’, i.e., informal network. In this way, an ‘organizational triangle’ can be generated which may serve as a more relevant heuristic device for empirical organizational research. Its ideal corners and some ideal hybrids on its edges (such as ideal clusters and ideal hub&spoke networks) still remain empirically void, but its inner space becomes empirically relevant and accessible. The ‘Organizational Triangle’ is tentatively applied (besides casual reference to corporate behavior that has lead to the current financial meltdown), by way of a set of criteria for instrumental problem-solving and a simple formal algorithm, to the cases of the supplier network of ‘DaimlerChrysler US International’ at Tuscaloosa, AL, the open-source network Linux, and the web-platforms Wikipedia and ‘Open-Source Car’. It is considered to properly reflect what is generally theorized in evolutionary-institutional economics of organizations and the firm and might offer some insight for the coming industrial reconstructions of the car and other industries

    Mating patterns and genetic diversity in the wild Daffodil Narcissus longispathus (Amaryllidaceae)

    Get PDF
    Despite the importance of Narcissus to ornamental horticulture, there have been no population genetic studies of wild species, many of which have narrow distributions. Here, we measure selfing rates and levels of genetic diversity at allozyme loci in six populations of Narcissus longispathus, a self-compatible daffodil endemic to a few mountain ranges in southeastern Spain. The populations were distributed among four distinct river valleys encompassing two main watersheds in the Sierra de Cazorla mountains. Selfing rates averaged 0.37 (range 0.23–0.46), resulting in significant inbreeding coefficients for the progeny (f=0.324). In contrast, estimates of inbreeding in parental genotypes were not significantly different from zero (f=0.001), indicating that few selfed offspring survive to maturity because of inbreeding depression. Species-wide estimates of genetic diversity for the six populations were Ps=0.38, Hes=0.119 and As=1.27 with significant genetic differentiation among populations theta=0.15. The observed patterns of genetic differentiation among populations are likely influenced by the mating system, and a combination of local topography, watershed affinities and gene flow.Peer reviewe
    corecore