21,078 research outputs found

    Elastohydrodynamic study of actin filaments using fluorescence microscopy

    Get PDF
    We probed the bending of actin subject to external forcing and viscous drag. Single actin filaments were moved perpendicular to their long axis in an oscillatory way by means of an optically tweezed latex bead attached to one end of the filaments. Shapes of these polymers were observed by epifluorescence microscopy. They were found to be in agreement with predictions of semiflexible polymer theory and slender-body hydrodynamics. A persistence length of 7.4±0.2μ7.4 \pm 0.2 \mum could be extracted.Comment: RevTex, 4 pages, 5 eps figs, submitted to PR

    Fluid Velocity Fluctuations in a Suspension of Swimming Protists

    Full text link
    In dilute suspensions of swimming microorganisms the local fluid velocity is a random superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions decaying as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocities are satisfied when the leading force singularity is a Stokeslet, but are not when it is any higher multipole. These results are confirmed by numerical studies and by experiments on suspensions of the alga Volvox carteri, which show that deviations from Gaussianity arise from near-field effects.Comment: 4 pages, 3 figure

    Flow visualization studies of blowing from the tip of a swept wing

    Get PDF
    Flow visualization studies of blowing from the tip of a swept wing were conducted in the Langley 16- by 24-inch water tunnel. Four wing tips, each with two independent blowing slots, were tested. The two slots were located one behind the other in the chordwise direction. The wing tips were designed to vary systematically the jet length, the jet in-plane exhaust direction (sweep), and the jet out-of-plane exhaust direction (anhedral). Each blowing slot was tested separately at two angles of attack and at four ratios of jet to free stream velocity ratios. Limited tests were conducted with blowing from both slots simultaneously. Blowing from the tip inhibited inboard spanwise flow on the upper wing surface near the tip. The jet path moved farther away from the tip with increasing jet to free stream velocity ratio and moved closer to the tip with increasing angle of attack

    Coupling of Active Motion and Advection Shapes Intracellular Cargo Transport

    Full text link
    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such motor/cargo motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.Comment: revtex, 5 pages, 5 figures, to appear in PRL (http://prl.aps.org/

    Crossover from Endogenous to Exogenous Activity in Open-Source Software Development

    Get PDF
    We have investigated the origin of fluctuations in the aggregated behaviour of an open-source software community. In a recent series of papers, de Menezes and co-workers have shown how to separate internal dynamics from external fluctuations by capturing the simultaneous activity of many system's components. In spite of software development being a planned activity, the analysis of fluctuations reveals how external driving forces can be only observed at weekly and higher time scales. Hourly and higher change frequencies mostly relate to internal maintenance activities. There is a crossover from endogenous to exogenous activity depending on the average number of file changes. This new evidence suggests that software development is a non-homogeneous design activity where stronger efforts focus in a few project files. The crossover can be explained with a Langevin equation associated to the cascading process, where changes to any file trigger additional changes to its neighbours in the software network. In addition, analysis of fluctuations enables us to detect whether a software system can be decomposed in several subsystems with different development dynamics.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    How to Track Protists in Three Dimensions

    Get PDF
    We present an apparatus optimized for tracking swimming microorganisms in the size range 10-1000 microns, in three dimensions (3D), far from surfaces, and with negligible background convective fluid motion. CCD cameras attached to two long working distance microscopes synchronously image the sample from two perpendicular directions, with narrowband dark-field or bright-field illumination chosen to avoid triggering a phototactic response. The images from the two cameras can be combined to yield 3D tracks of the organism. Using additional, highly directional broad-spectrum illumination with millisecond timing control the phototactic trajectories in 3D of organisms ranging from Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic interactions can also be investigated without convective interference. Minimal modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure

    Collective chemotactic dynamics in the presence of self-generated fluid flows

    No full text
    In micro-swimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynamic instabilities for isotropic suspensions, the first driving aggregation, the second producing increased orientational order in suspensions of "pushers" and maximal disorder in suspensions of "pullers". Nonlinear simulations show that hydrodynamic interactions can limit and modify chemotactically-driven aggregation dynamics. In puller suspensions the dynamics form aggregates that are mutually-repelling due to the non-trivial flows. In pusher suspensions chemotactic aggregation can lead to destabilizing flows that fragment the regions of aggregation.Comment: 4 page

    Fluid dynamics of bacterial turbulence

    Get PDF
    Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subtilis and compare them with a minimal fourth-order vector-field theory for incompressible bacterial dynamics. Velocimetry of bacteria and surrounding fluid, determined by imaging cells and tracking colloidal tracers, yields consistent results for velocity statistics and correlations over two orders of magnitude in kinetic energy, revealing a decrease of fluid memory with increasing swimming activity and linear scaling between energy and enstrophy. The best-fit model parameters allow for quantitative agreement with experimental data.Comment: 5 pages, 4 figure
    corecore