34,993 research outputs found
Selectable towline spin chute system
An emergency spin recovery parachute is presented that is housed within a centrally mounted housing on the aft end of an aircraft and connected to a ring fitting within the housing. Two selectively latching shackles connected to separate towlines are openly disposed adjacent the ring fitting. The towlines extend in opposite directions from the housing along the aircraft wing to attachment points adjacent the wing-tips where the other end of each towline is secured. Upon pilot command, one of the open shackles latches to the ring fitting to attach the towline connected thereto, and a second command signal deploys the parachute. Suitable break-away straps secure the towlines to the aircraft surface until the parachute is deployed and the resulting force on the towline attached to the parachute overcomes the straps and permits the towline to extend to the point of attachment to exert sufficient drag on the spinning aircraft to permit the pilot to regain control of the aircraft. To employ the parachute as a drag chute to reduce landing speeds, both shackles and their respective towlines are latched to the ring fitting
Composite CDMA - A statistical mechanics analysis
Code Division Multiple Access (CDMA) in which the spreading code assignment
to users contains a random element has recently become a cornerstone of CDMA
research. The random element in the construction is particular attractive as it
provides robustness and flexibility in utilising multi-access channels, whilst
not making significant sacrifices in terms of transmission power. Random codes
are generated from some ensemble, here we consider the possibility of combining
two standard paradigms, sparsely and densely spread codes, in a single
composite code ensemble. The composite code analysis includes a replica
symmetric calculation of performance in the large system limit, and
investigation of finite systems through a composite belief propagation
algorithm. A variety of codes are examined with a focus on the high
multi-access interference regime. In both the large size limit and finite
systems we demonstrate scenarios in which the composite code has typical
performance exceeding sparse and dense codes at equivalent signal to noise
ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission -
submitted to J.Stat.Mec
Environmental Consequences of Ethanol from Corn Grain, Ethanol from Lignocellulosic Biomass, and Conventional Gasoline
The Energy Policy Act of 2005 includes a provision designed to double the production and use of ethanol in fuels by 2012, and that beginning in 2013, a minimum of 250 million gallons per year of ethanol be produced from lignocellulosic sources such as corn stover, wheat straw, and switchgrass. This study was conducted to determine the environmental and health consequences of using ethanol as an additive to gasoline. Comparisons are made among conventional gasoline (CG), a blend of 10 percent corn-ethanol and 90 percent CG (E10-corn), and a blend of 10 percent ethanol produced from lignocellulosic biomass (LCB) and 90 CG (E10-LCB).Resource /Energy Economics and Policy,
Optimizing the discrete time quantum walk using a SU(2) coin
We present a generalized version of the discrete time quantum walk, using the
SU(2) operation as the quantum coin. By varying the coin parameters, the
quantum walk can be optimized for maximum variance subject to the functional
form and the probability distribution in the position
space can be biased. We also discuss the variation in measurement entropy with
the variation of the parameters in the SU(2) coin. Exploiting this we show how
quantum walk can be optimized for improving mixing time in an -cycle and for
quantum walk search.Comment: 6 pages, 6 figure
Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code
Large-scale universal quantum computing requires the implementation of
quantum error correction (QEC). While the implementation of QEC has already
been demonstrated for quantum memories, reliable quantum computing requires
also the application of nontrivial logical gate operations to the encoded
qubits. Here, we present examples of such operations by implementing, in
addition to the identity operation, the NOT and the Hadamard gate to a logical
qubit encoded in a five qubit system that allows correction of arbitrary single
qubit errors. We perform quantum process tomography of the encoded gate
operations, demonstrate the successful correction of all possible single qubit
errors and measure the fidelity of the encoded logical gate operations
Computing with Noise - Phase Transitions in Boolean Formulas
Computing circuits composed of noisy logical gates and their ability to
represent arbitrary Boolean functions with a given level of error are
investigated within a statistical mechanics setting. Bounds on their
performance, derived in the information theory literature for specific gates,
are straightforwardly retrieved, generalized and identified as the
corresponding typical-case phase transitions. This framework paves the way for
obtaining new results on error-rates, function-depth and sensitivity, and their
dependence on the gate-type and noise model used.Comment: 10 pages, 2 figure
- …
