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Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean
functions with a given level of error are investigated within a statistical mechanics setting. Bounds
on their performance, derived in the information theory literature for specific gates, are straightfor-
wardly retrieved, generalized and identified as the corresponding typical-case phase transitions. This
framework paves the way for obtaining new results on error-rates, function-depth and sensitivity,
and their dependence on the gate-type and noise model used.
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Noise is inherent in most forms of computing and its
impact is more dramatic as the computing circuits be-
come more complex and of large scale [1]. Classical
computing circuits based on electromagnetic components
suffer from thermal noise and production errors, quan-
tum computers suffer from decoherence, whilst an under-
standing of noisy processes, inherent in neural networks
and biological systems, remains poorly understood.

The first model of noisy computation was proposed by
von Neumann [2] who used Boolean circuits composed
of ε-noisy gates to gain insight into the robustness of bi-
ological neuronal networks. A circuit in this context is
a directed acyclic graph in which nodes of in-degree zero
are either Boolean constants or references to arguments,
nodes of in-degree k ≥ 1 are gates computing Boolean
functions of k arguments and nodes of out-degree zero
represent circuit outputs. A formula is a single-output
circuit in which the output of each gate is input to at most
one gate. An ε-noisy gate computes a Boolean function
α : {−1, 1}k →{−1, 1}, but for each input S ∈ {−1, 1}k

there is an error probability ε such that α(S)→−α(S);
we consider the error probability to be independent for
each gate. A noisy circuit with ε > 0 represents a given
deterministic function with a maximum error probability
δ over all possible circuit inputs determining its reliabil-
ity. Von Neumann showed that reliable computation,
with δ<1/2, is possible [2] for small ε values and specific
gates, and demonstrated how reliability can be improved
using ε-noisy gates only. In a more recent analysis Pip-
penger [3] demonstrated that formulae only compute re-
liably upto a certain threshold in the gate error rate, and
that reliable computation with noisy elements requires
strictly greater depth. These bounds have subsequently
been refined [4–6], and developed to include circuits [4].

Random Boolean functions play an important role
in information theory as they allow for the explo-
ration of average case properties [7], in contrast to the
traditionally-studied worst-case scenario. The generation
of typical functions, sampled uniformally over the space
of Boolean functions, is a research area in its own right as
most conventional methods focus on the ability to con-

struct arbitrary functions using basic gates or procedures,
but typically result in highly uncharacteristic functions
when generated at random [8–10]. Here we use a growth
process where one defines an initial distribution over a
set of simple Boolean formulae; these are then combined
repeatedly by Boolean connectives to define new formu-
lae. One such process [11] uses only a single Boolean
connective to show that, under very broad conditions,
the probability of random functions computed by formu-
lae of depth ` tends to the uniform distribution over all
n-variable Boolean functions as `→∞ [11].

In this Letter we show how models of random formulae
can be mapped onto a physical framework and employ
methods of statistical physics, developed specifically to
analyze the typical behavior of random disordered sys-
tems, to gain insight into the behavior of noisy Boolean
random formulae. The stability of the circuit towards
input-layer perturbations and its dependence on the in-
put magnetization are studied to establish the main char-
acteristics of the generated formulae. To investigate the
properties of noisy circuits we consider two copies of the
same topology with different temperatures (1/β), repre-
senting the noisy (β < ∞) and noiseless (β̂ →∞) ver-
sions of the same circuit. We show that the typical-case
macroscopic behavior observed corresponds straightfor-
wardly to the bounds obtained in the information theory
literature for specific cases [2]-[6]. Being very general,
the framework is extended to consider further properties
of random Boolean formulae for different gates and their
dependence on error level and formula depth.

The noisy computation model considered here, shown
in Fig. 1, is a feed-forward layered N×(L+1) Boolean
circuit. The layers in the circuit are numbered from 0 (in-
put) to L (output). Each layer ` ∈ {1, .., L} in the circuit
is composed of exactly N ε-noisy, k-ary Boolean gates.
Due to gate-noise, the i-th gate in the `-th layer operates
in a stochastic manner according to the microscopic law

P (S`
i |S`−1

i1
, . . . , S`−1

ik
)=

eβS`

iα(S`−1
i1

,...,S`−1
ik

)

2 cosh[βα(S`−1
i1

, . . . , S`−1
ik

)]
(1)

where β relates to the gate noise ε via tanh β=1−2ε. The
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FIG. 1: The model of two coupled systems with identical
topology and different inverse temperatures β and β̂ → ∞.
Gates are indicated by circles and SI by squares.

gate-output S`
i is completely random/deterministic when

β→0/∞, respectively. The model is acyclic by definition
so that given the state of the layer ` the gates of layer `+1
operate independently of each other. This suggests that
the probability of the microscopic state S0, .., SL, where
S` ∈ {−1, 1}N , is a product of (1) over circuit sites and
layers. The joint probability of microscopic states in two
systems of identical topology but different gate-noise is

P [{S`}; {Ŝ`}]=P (S0, Ŝ
0|SI)

L∏

`=1

P (S`|S −̀1)P (Ŝ
`|Ŝ −̀1

)

(2)
where

P (S`|S −̀1)=
N∏

i=1

eβS`

i

∑N
j1,..,jk

A`,i
j1,..,jk

α(S −̀1
j1

,..,S −̀1
jk

)

2 cosh[β
∑N

j1,..,jk
A`,i

j1,..,jk
α(S −̀1

j1
, .., S −̀1

jk
)]

.

(3)
The adjacency tensor A`,i

j1,..,jk
=1 when it encodes a con-

nection from outputs j1, .., jk in layer `−1 to input i in
layer `, and 0 otherwise; with {i = 1, .., N ; ` = 1, .., L}.
The conditional probability P (Ŝ

`|Ŝ −̀1
) is the same as

(3) but with β → β̂. The source of disorder in our
model are the random connections and boundary con-
ditions. Random connections are generated by selecting
the i-th gate at layer ` and sampling exactly k indices,
which point to outputs of layer `−1, uniformly from the
set of all possible (unordered) indices {i1, .., ik}. This
is carried out repeatedly and independently for all gates

and layers giving rise to the adjacency tensor probabil-
ity P (A`,i

j1,..,jk
) = 1

Nk δA`,i
j1,..,jk

;1 +(1− 1
Nk )δA`,i

j1,..,jk
;0. To

cater for a possible higher level of correlation, the 0-layer
boundary conditions are generated by selecting randomly
members of the finite set SI ={SI

1, .., S
I
n}; the indices xi

are sampled uniformly with P (xi) = 1/n and assigned
to the input layer. This leads to the random boundary
conditions P (S0, Ŝ

0|SI) =
∏N

i=1 δS0
i ;SI

xi
δŜ0

i ;S0
i

.

The structure of this probability distribution is similar
to the evolution of disordered Ising spin systems [12] if
layers are regarded as discrete time-steps of parallel dy-
namics. The generating functional method [13] provides

Z[ψ; ψ̂] =
〈
e−i

∑
`,i{ψ`

i S`
i +ψ̂`

i Ŝ`
i}

〉
, (4)

where 〈. . .〉 denotes the average generated by (2). The
generating functional (4), regarded also as a characteris-
tic function, is used to compute moments of (2) by taking
partial derivatives with respect to the generating fields
{ψ`

i , ψ̂
`′
j }, e.g. 〈S`

i Ŝ
`′
j 〉 = − lim

ψ,
ˆψ→0

∂2

∂
ψ`

i
∂

ψ̂`′
j

Z[ψ; ψ̂].

To compute Z[ψ; ψ̂] we assume that for N →∞ the sys-
tem becomes self-averaging, i.e. Z = Z, where · · · is the
disorder average. Furthermore, the normalization prop-
erty Z[0;0] = 1 allows one to average over the disorder
Z directly, giving rise to the macroscopic observables

m(`)=
1
N

N∑

i=1

〈S`
i 〉, C(`) =

1
N

N∑

i=1

〈S`
i Ŝ

`
i 〉 , (5)

the average layer activity (magnetization) m(`) on layer
` and overlap C(`) between the two systems. Averaging
(4) over the disorder leads to the saddle-point integral

Z[. . .]=
∫ {dPdP̂dΩdΩ̂}eNΨ[P ,

ˆP ;Ω,
ˆΩ] where Ψ is

Ψ = i
∑

`

∑

S,Ŝ

P̂
`
(S, Ŝ)P `(S, Ŝ)

+
∑
m

P (m) log
∑

{S`,Ŝ`}
Mm[{S`, Ŝ`}] (6)

and Mm is an effective single-site measure (after remov-
ing the fields ψ, ψ̂)

Mm[{S`, Ŝ`}]=δS0;SI
m

δŜ0;S0

L−1∏

`=0

{ ∑

{Sj ,Ŝj}

k∏

j=1

[
P `(Sj , Ŝj)

] eβS`+1α(S1,..,Sk)

2 cosh[βα(S1, .., Sk)]
eβ̂Ŝ`+1α(Ŝ1,..,Ŝk)

2 cosh[β̂α(Ŝ1, .., Ŝk)]
e−iP̂ `(S`,Ŝ`)

}
.

(7)

For N→∞ the averaged generating functional Ψ is domi-
nated by its extremum. Functional variation with respect

to the order parameter P̂ `(S`, Ŝ`) provides the saddle-
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point equation P `(S, Ŝ) =
∑

m P (m)
〈
δS`;SδŜ`;Ŝ

〉
Mm

,

where 〈· · · 〉Mm
is the average with respect to (7). The

physical meaning of P `(S, Ŝ) relates to the averaged
joint probability of nodes in the two systems P `(S, Ŝ) =
limN→∞ 1

N

∑N
i=1 〈δS`

i ;SδŜ`
i ;Ŝ〉|SI , while the conjugate or-

der parameter, which ensures normalization of P `(S, Ŝ),
vanishes. This simplifies our effective measure (7) for
computing the macroscopic observables, yielding

m(`+1) =
∑

{Sj}

k∏

j=1

[
1
2
{1+Sjm(`)}

]
tanh[βα(S1, .., Sk)]

C(`+1) =
∑

{Sj ,Ŝj}

k∏

j=1

[
1
2
{
1+Sjm(`)+Ŝjm̂(`)+SjŜjC(`)

}]

× tanh[βα(S1, .., Sk)] tanh[β̂α(Ŝ1, .., Ŝk)]. (8)

The magnetization m̂(`) is computed by (8) using β̂; ini-
tial conditions are m(0)=m̂(0)= 1

|SI |
∑

S∈SI S, C(0)=1.
The connectivity profile considered here results in a

simple set of equations. The macroscopic behavior of
the two systems is completely determined by the set of
observables {m(`), m̂(`), C(`)} through the order param-
eter P `(S, Ŝ)= 1

2 (1+Sm(`)+Ŝm̂(`)+SŜC(`)), while the
single system behavior is dominated by {m(`)}. Fur-
thermore, since 〈∏m S`

im
〉 →∏

m〈S`
im
〉 for finite m, the

spins in layer ` are uncorrelated when N →∞; this is
due to the fact that the i-th site is a root of a full k-
ary tree, which grows from the input layer and points to
Boolean variables in the set SI . Loops in the circuit are
rare, so that trees can be regarded as random indepen-
dent Boolean formulae for a given input. The output of
a typical formula at layer ` is determined by P `(S).

The order parameter C(`) and the normalized Ham-

ming distance D(`) between states S` and Ŝ
`

are related
via the identity D(`)= 1

2 (1−C(`)). This gives rise to the
measure ∆(`)= limβ,β̂→∞D(`), for the circuit’s sensitiv-

ity with respect to its input. The probability P (S`
i 6= Ŝ`

i)
for any node, which relates to the Hamming distance
D(`), facilitates the estimate of the noisy circuit’s `-layer
error probability δ(`) = maxSI limβ̂→∞D(`), comparing
the noisy and noiseless node values for all inputs. Obvi-
ously, in the absence of noise δ(`)=0, ∀`.

To obtain results for a specific case, which could be
compared against those obtained in the information the-
ory literature, we apply equations (1) for a particular
Boolean gate α, the k-input majority gate (MAJ-k). The
reasons for choosing this gate are twofold. Firstly, it
was proved [5, 6] to be optimal for noisy computation
in formulae. Secondly, a formula constructed at ran-
dom using majority gates can in principle compute any
Boolean function [11] with uniform probability. A con-
venient representation of the MAJ-k gate is of the form
MAJ(S1, .., Sk)=sgn[

∑k
j=1 Sj ] with odd k. For the par-

ticularly simple example MAJ-3 one obtains for β̂→∞

m(`+1) =
1
2

tanh β [3m(`)−m3(`)] (9)

C(`+1) = tanh β
[3
2
m(`)m̂(`)− 3

4
C(`)m2(`)

− 3
4
C(`)m̂2(`)+

3
4
C(`)+

1
4
C3(`)

]
. (10)

Insight on the functions implemented and the gate noise
threshold can be obtained from equation (9), which de-
scribes the evolution of the magnetization from layer
to layer. When expanded around the stationary so-
lution m(∞) = 0 it identifies the critical noise value
ε∗ = 1/6, identical to the results of [2, 5], below which
the (unordered) m(∞)=0 solution becomes unstable and

two stable (ordered) solutions m(∞) =±
√

1−6ε
1−2ε emerge.

Studying the joint dynamics of (9-10) shows that for
ε > 1/6 the magnetization decays to 0 (exponentially)
while for ε < 1/6 the stationary solutions appear, cor-
responding to the positive and negative initial magne-
tizations m(0), respectively. The boundary separating
these phases, shown in Fig. 2a, identifies the noise-level
below which the circuit can preserve one bit of input in-
formation SI ={S} for arbitrarily many layers; the error
probability P `(−S) = 1

2 (1−Sm(`)) measures how well it
is preserved after ` layers. More complicated functions
(more layers required) are more sensitive to gate noise.

The analysis can easily accommodate other gates, in
particular MAJ-k. Using similar arguments one identi-
fies the critical noise level ε∗=1/2−2k−2/

(
k−1

(k−1)/2

)
below

which two stable solutions emerge. Computing formu-
lae withlimited error δ above the critical noise level ε∗,
identical to the threshold reported in [6], becomes in-
feasible. Similarly, the noise threshold for formulae con-
structed of NAND gates identifies a threshold noise level
ε∗=(3−√7)/4, identical to the one derived in [14].

General properties of average formulae can be straight-
forwardly obtained from the site probability of aver-
age formulae P `(S) at layer `. Stationary solutions in
the noiseless case show m(∞) = ±1, in correspondence
to the sign of the initial magnetization; giving rise to
biased function outputs. For m(0) = 0 one obtains
m(∞) = 0, so that each site of the model can be asso-
ciated with some random Boolean function output, eval-
uating to ±1 with equal probability. Consequently, de-
pending on the initial conditions, formulae converge to
a single Boolean function or to the uniform distribution
over some set of functions [7]. Our result is consistent
with majority gate growth process [7, 11] where for input
SI ={−1, 1, SI

1 , .., SI
n,−SI

1 , ..,−SI
n} stationary state formu-

lae compute all Boolean functions of n variables while for
SI = {−1, 1, SI

1 , .., SI
n} (also without−1, 1) they converge

to the MAJ-n function (odd n) or to the uniform distri-
bution over slice functions (even n) [7]. Convergence to
the stationary solution m(∞)) is at depth O(log n) for
m(0)=1/n where n∈N in agreement with [7].
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FIG. 2: Properties of the MAJ-3 gate: (a) Magnetization m
and output error δ as a function of gate noise ε. (b) Sensitivity
of ∆(`) to input mismatch ∆(0) for m(0) = 0. (c) Phase
diagram for gate noise ε at layer L. For the MAJ-7 function,
evolution of: (d) Magnetization m. (e) Output error δ.

Function error-rates can be calculated through the
study of equation (10) describing the evolution of the
overlap between the two systems. Initial conditions are
the same for both systems m(0) = m̂(0) and C(0) = 1.
The magnetization in the noisy system (ε ≤ 1/6) con-

verges to m(∞)=±
√

1−6ε
1−2ε , depending on the sign of m(0).

Using these stationary values and equation (10) we find
C(∞) (7−18 ε)− (1−2 ε)C3(∞) = ±6

√
(1−2 ε) (1−6 ε)

leading to the error probability δ(∞) plotted in Fig. 2a.
The stationary solution C(∞)=1 of equation (10) for

initial conditions m(0) = 0, C(0) = 1 and ε = 0 is un-
stable under perturbations to C(0), resulting in the sta-
ble stationary state C(∞) = 0. Consequently, the cir-
cuit is input-sensitive leading to an increasing Hamming
distance ∆(`) for small perturbations ∆(0) as shown in
Fig. 2b. For ε > 0 the circuit amplifies the noise and
δ(L) grows but remains limited for sufficiently small ε as
shown in Fig. 2c.

To examine the computation performed at layer `
we consider the input set SI = {S1, .., S7}, correspond-
ing to the function MAJ-7 for the noiseless case, with
lowest possible initial magnetization m(0) = 1/7 where
changes between layers are smallest. Figure 2d shows
the magnetization m(`) for different gate-noise levels;
the convergence-rate decreases with increasing ε. Close
to the critical value the difference equation (9) can
be approximated by the differential equation d

d`m(`) =
−m(`)+1

2 (1−2ε)[3m(`)−m3(`)] for continuous `. Its solu-
tion close to the phase boundary, obtained by expanding
ε=1/6+∆ε where |∆ε|¿1, exhibits exponential conver-
gence |m(`)−m(∞)| ≈ e−const∆ε`.

The function error δ(`), shown in Fig. 2e for different
ε values, exhibits two distinct stages in the dynamics.
Initially, the error increases until it reaches its maximum
value at ` = 5, before the MAJ-7 function is computed

exactly at ` = 8 for ε = 0 (see Fig. 2d); the location of
this maximum is independent of ε. This suggests that
gate-inputs at layers `≤5 are non-uniform, contributing
to noise-amplification, but become more uniform later
leading to noise-suppression and decreasing error. As we
approach ε∗ the number of layers needed for the error to
reach stationarity increases; in the region ε = 1/6±∆ε
it can be estimated from the asymptotic form derived
for m(`). The dynamic behavior of the error changes to
monotonically increasing at ε0 = 1

2

[
1−m2(0)
3−m2(0)

]
above which

noise cannot be reduced by additional layers. For εÀ1/6
the error evolution becomes strictly monotonic it relaxes
to its stationary value 1/2 exponentially fast.

By mapping the problem of noisy computation onto
a physical framework, we retrieved many of the exist-
ing bounds and extended them to include arbitrary gates
and/or distribution of gates. In addition, we calculated
the level of error and function-bias expected at any depth,
the sensitivity to input perturbations and expected con-
vergence rate depending on the input bias, gate proper-
ties and gate-noise level. This framework enables one to
discover typical properties of noisy computation that are
inaccessible via traditional methods of information the-
ory and will undoubtedly contribute to exciting new dis-
coveries. For instance, one can show that systems com-
posed of the biologically-inspired perceptron-like gates
are more robust against gate noise than other logical
gates and study the effect of hard (systematic) noise.
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