7 research outputs found

    Effect of stocking density on growth performance of monosex tilapia (Oreochromis niloticus) with Indian spinach (Basella alba) in a recirculating aquaponic system

    Full text link
    An experiment was conducted to compare effect of stocking density on growth performance of monosex tilapia (Oreochromis niloticus) with Indian spinach (Basella alba) in a recirculating aquaponic system. The experiment was set-up for 8 weeks under 4 treatments with three replications, where stocking density of tilapia were 30, 50, 70 and 90 fish/tank (300 litre) in treatments T1, T2, T3 and T4, respectively. Water from the tank was recirculated through a vegetable growing tray. Each of the tray was 0.15 m3in size, which was planted with 12 plants (Indian spinach). The fish of all the treatments was fed two times a day. During the experimental period,the range of water temperature was 27.1 to 31.50 C, pH 7.48 to 8.28, ammonia 0.2 to 2.0 mg/l and dissolve oxygen 5.11 to 6.58 mg/l. At the end of the experiment, average weight gain, final length, specific growth rate (%/day), survival rate was significantly higher in T1 (30 fish/tank) treatment while the net yield of fish and plant biomass was higher in T2 (50 fish/tank) treatment.Therefore, the study suggests that stocking density of 50 fish/tank for tilapia, i.e. 167 fish/m3, is suitable for production of both plant and fish in a recirculating aquaponic system

    Impact of gut microbiome on skin health:gut-skin axis observed through the lenses of therapeutics and skin diseases

    No full text
    Abstract The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases

    A Review on the Recent Advances in the Reductions of Carbon–Carbon/Oxygen Multiple Bonds Including Aromatic Rings Using Raney Ni–Al Alloy or Al Powder in the Presence of Noble Metal Catalysts in Water

    No full text

    Neuroimaging Biomarkers in Mild Traumatic Brain Injury (mTBI)

    No full text
    corecore