87 research outputs found

    Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity.

    Get PDF
    A tumor blood vessel is a key regulator of tissue perfusion, immune cell trafficking, cancer metastasis, and therapeutic responsiveness. mTORC1 is a signaling node downstream of multiple angiogenic factors in the endothelium. However, mTORC1 inhibitors have limited efficacy in most solid tumors, in part due to inhibition of immune function at high doses used in oncology patients and compensatory PI3K signaling triggered by mTORC1 inhibition in tumor cells. Here we show that low-dose RAD001/everolimus, an mTORC1 inhibitor, selectively targets mTORC1 signaling in endothelial cells (ECs) without affecting tumor cells or immune cells, resulting in tumor vessel normalization and increased antitumor immunity. Notably, this phenotype was recapitulated upon targeted inducible gene ablation of the mTORC1 component Raptor in tumor ECs (RaptorECKO). Tumors grown in RaptorECKO mice displayed a robust increase in tumor-infiltrating lymphocytes due to GM-CSF-mediated activation of CD103+ dendritic cells and displayed decreased tumor growth and metastasis. GM-CSF neutralization restored tumor growth and metastasis, as did T cell depletion. Importantly, analyses of human tumor data sets support our animal studies. Collectively, these findings demonstrate that endothelial mTORC1 is an actionable target for tumor vessel normalization, which could be leveraged to enhance antitumor immune therapies

    Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product

    No full text
    One of the cellular targets implicated in the process of transformation by the adenovirus E1A proteins is a 105K cellular protein. Previously, this protein had been shown to form stable protein/protein complexes with the E1A polypeptides but its identity was unknown. Here, we demonstrate that it is the product of the retinoblastoma gene. The interaction between E1A and the retinoblastoma gene product is the first demonstration of a physical link between an oncogene and an anti-oncogene

    Role of Arginines in Coenzyme A Binding and Catalysis by the Phosphotransacetylase from Methanosarcina thermophila

    No full text
    Phosphotransacetylase (EC 2.3.1.8) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA): CH(3)COOPO(3)(2−) + CoASH ⇆ CH(3)COSCoA + HPO(4)(2−). The role of arginine residues was investigated for the phosphotransacetylase from Methanosarcina thermophila. Kinetic analysis of a suite of variants indicated that Arg 87 and Arg 133 interact with the substrate CoA. Arg 87 variants were reduced in the ability to discriminate between CoA and the CoA analog 3′-dephospho-CoA, indicating that Arg 87 forms a salt bridge with the 3′-phosphate of CoA. Arg 133 is postulated to interact with the 5′-phosphate of CoA. Large decreases in k(cat) and k(cat)/K(m) for all of the Arg 87 and Arg 133 variants indicated that these residues are also important, although not essential, for catalysis. Large decreases in k(cat) and k(cat)/K(m) were also observed for the variants in which lysine replaced Arg 87 and Arg 133, suggesting that the bidentate interaction of these residues with CoA or their greater bulk is important for optimal activity. Desulfo-CoA is a strong competitive inhibitor of the enzyme, suggesting that the sulfhydryl group of CoA is important for the optimization of CoA-binding energy but not for tight substrate binding. Chemical modification of the wild-type enzyme by 2,3-butanedione and substrate protection by CoA indicated that at least one reactive arginine is in the active site and is important for activity. The inhibition pattern of the R87Q variant indicated that Arg 87 is modified, which contributes to the inactivation; however, at least one additional active-site arginine is modified leading to enzyme inactivation, albeit at a lower rate

    The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation.

    No full text
    A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdrawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [(125)I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in ?4, ?7, and ?2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in ?4, ?7, and ?2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding

    Acute procedural efficacy and safety of a novel cryoballoon for the treatment of paroxysmal atrial fibrillation: Results from the POLAR ICE study

    Get PDF
    Introduction: Pulmonary vein isolation (PVI) is well established as a primary treatment for atrial fibrillation (AF). The POLAR ICE study was designed to collect prospective real world data on the safety and effectiveness of the POLARxTM cryoballoon for PVI to treat paroxysmal AF. Methods: POLAR ICE, a prospective, non-randomized, multicenter (international) registry (NCT04250714), enrolled 399 patients across 19 European centers. Procedural characteristics, such as time to isolation, cryoablations per pulmonary vein (PV), balloon nadir temperature, and occlusion grade were recorded. PVI was confirmed with entrance block testing. Results: Data on 372 de novo PVI procedures (n = 2190 ablations) were collected. Complete PVI was achieved in 96.8% of PVs. Procedure and fluoroscopy times were 68.2 ± 24.6 and 15.6 ± 9.6 min, respectively. Left atrial dwell time was 46.6 ± 18.3 min. Grade 3 or 4 occlusion was achieved in 98.2% of PVs reported and 71.2% of PVs isolation required only a single cryoablation. Of 2190 cryoapplications, 83% had a duration of at least 120 s; nadir temperature of these ablations averaged −56.3 ± 6.5°C. There were 6 phrenic nerve palsy events, 2 of which resolved within 3 months of the procedure. Conclusion: This real-world usage data on a novel cryoballoon suggests this device is effective, safe, and relatively fast in centers with cryoballoon experience. These data are comparable to prior POLARx reports and in keeping with reported data on other cryoballoons. Future studies should examine the long-term outcomes and the relationship between biophysical parameters and outcomes for this novel cryoballoon
    • …
    corecore