656 research outputs found

    Bovine Tuberculosis and the Establishment of an Eradication Program in the United States: Role of Veterinarians

    Get PDF
    The significance of the identification of Mycobacterium bovis as a zoonotic pathogen in 1882 was not initially recognized. After years of research by veterinarians, and other scientists, the importance of M. bovis as a pathogen and the public health ramifications, were appreciated. Veterinarians played pivotal roles in the creation of improved meat and milk inspection, diagnosis of M. bovis infected cattle, and in time, a bovine tuberculosis eradication program that would impact every cattle producer in the country. After overcoming many challenges, the 93-year-long program has decreased disease prevalence from 5% to <0.001%. Today, years of hard work by practitioners, researchers and regulatory officials alike, have yielded a program with a net benefit of almost $160 million per year

    Evolution of the CD163 family and its relationship to the bovine gamma delta T cell co-receptor WC1

    Get PDF
    Background: The scavenger receptor cysteine rich (SRCR) domain is an ancient and conserved protein domain. CD163 and WC1 molecules are classed together as group B SRCR superfamily members, along with Spα, CD5 and CD6, all of which are expressed by immune system cells. There are three known types of CD163 molecules in mammals, CD163A (M130, coded for by CD163), CD163b (M160, coded for by CD163L1) and CD163c-α (CD163L1 or SCART), while their nearest relative, WC1, is encoded by a multigene family so far identified in the artiodactyl species of cattle, sheep, and pigs. Results: We annotated the bovine genome and identified genes coding for bovine CD163A and CD163c-α but found no evidence for CD163b. Bovine CD163A is widely expressed in immune cells, whereas CD163c-α transcripts are enriched in the WC1+ γδ T cell population. Phylogenetic analyses of the CD163 family genes and WC1 showed that CD163c-α is most closely related to WC1 and that chicken and platypus have WC1 orthologous genes, previously classified as among their CD163 genes. Conclusion: Since it has been shown that WC1 plays an important role in the regulation of γδ T cell responses in cattle, which, like chickens, have a high percentage of γδ T cells in their peripheral blood, CD163c-α may play a similar role, especially in species lacking WC1 genes. Our results suggest that gene duplications resulted in the expansion of CD163c-α-like and WC1-like molecules. This expanded repertoire was retained by species known as γδ T cell high , but homologous SRCR molecules were maintained by all mammals

    Antigen-Specific B Cell Responses of Vaccinated, Neonatal Calves

    Get PDF
    The immune response of newborn calves to early vaccination is often variable and frequently characterized by marginal or nonexistent antibody responses. The B cell subpopulation of immune cells is pivotal in the production of antibody and has not been characterized completely in the newborn calf. Results from this research describe the composition and antigen-specific responses of B cell populations in preruminant calves vaccinated at an early age. Although preliminary, these data indicate that the responsiveness of B cell population in young calves is dependent on the nature of the vaccine and less on animal maturity. This research provides important new information regarding the immune responsiveness of the neonatal calf to vaccination

    Fecal Volatile Organic Ccompound Profiles from White-Tailed Deer (\u3ci\u3eOdocoileus virginianus\u3c/i\u3e) as Indicators of \u3ci\u3eMycobacterium bovis\u3c/i\u3e Exposure or \u3ci\u3eMycobacterium bovis\u3c/i\u3e Bacille Calmette-Guerin (BCG) Vaccination

    Get PDF
    White-tailed deer (Odocoileus virginianus) serve as a reservoir for bovine tuberculosis, caused by Mycobacterium bovis, and can be a source of infection in cattle. Vaccination with M. bovis Bacille Calmette Guerin (BCG) is being considered for management of bovine tuberculosis in deer. Presently, no method exists to non-invasively monitor the presence of bovine tuberculosis in deer. In this study, volatile organic compound profiles of BCG-vaccinated and non-vaccinated deer, before and after experimental challenge with M. bovis strain 95–1315, were generated using solid phase microextraction fiber head-space sampling over suspended fecal pellets with analysis by gas chromatography/mass spectrometry. Chromatograms were processed using XCMS Online to characterize ion variation among treatment groups. The principal component scores resulting from significant (α = 0.05) ion responses were used to build linear discriminant analysis models. The sensitivity and specificity of these models were used to evaluate the feasibility of using this analytical approach to distinguish within group comparisons between pre- and post-M. bovis challenge: non-vaccinated male or female deer, BCG-vaccinated male deer, and the mixed gender non-vaccinated deer data. Seventeen compounds were identified in this analysis. The peak areas for these compounds were used to build a linear discriminant classification model based on principal component analysis scores to evaluate the feasibility of discriminating between fecal samples from M. bovis challenged deer, irrespective of vaccination status. The model best representing the data had a sensitivity of 78.6% and a specificity of 91.4%. The fecal head-space sampling approach presented in this pilot study provides a non-invasive method to discriminate between M. bovis challenged deer and BCG-vaccinated deer. Additionally, the technique may prove invaluable for BCG efficacy studies with free-ranging deer as well as for use as a non-invasive monitoring system for the detection of tuberculosis in captive deer and other livestock

    Mycobacterium bovis: A model pathogen at the interface of livestock, wildlife, and humans

    Get PDF
    Complex and dynamic interactions involving domestic animals, wildlife, and humans create environments favorable to the emergence of new diseases, or reemergence of diseases in new host species. Today, reservoirs of Mycobacterium bovis, the causative agent of tuberculosis in animals, and sometimes humans, exist in a range of countries and wild animal populations. Free-ranging populations of white-tailed deer in the US, brushtail possum in New Zealand, badger in the Republic of Ireland and the United Kingdom, and wild boar in Spain exemplify established reservoirs of M. bovis. Establishment of these reservoirs is the result of factors such as spillover from livestock, translocation of wildlife, supplemental feeding of wildlife, and wildlife population densities beyond normal habitat carrying capacities. As many countries attempt to eradicate M. bovis from livestock, efforts are impeded by spillback from wildlife reservoirs. It will not be possible to eradicate this important zoonosis from livestock unless transmission between wildlife and domestic animals is halted. Such an endeavor will require a collaborative effort between agricultural, wildlife, environmental, and political interests.Peer Reviewe

    Characterization of effector and memory T cell subsets in the immune response to bovine tuberculosis in cattle

    Get PDF
    Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection

    Laparoscopic Colectomy: Does the Learning Curve Extend Beyond Colorectal Surgery Fellowship?

    Get PDF
    Colorectal fellowship training adequately surpasses the learning curve with regard to safety and outcome; however, the surgeon continues to increase operative efficiency during the first year of practice

    Evaluation of ethanol vortex ELISA for detection of bovine tuberculosis in cattle and deer

    Get PDF
    Background: The use of serological assays for diagnosis of bovine tuberculosis (TB) has been intensively studied and use of specific antigens have aided in improving the diagnostic accuracy of the assays. In the present study, we report an in-house enzyme linked immunosorbent assay (ELISA), developed by using ethanol extract of Mycobacterium bovis (M. bovis). The assay, named (ethanol vortex ELISA [EVELISA]), was evaluated for detection of anti- M. bovis antibodies in the sera of cattle and white-tailed deer. Methods: By using the EVELISA, we tested sera obtained from two species of animals; cattle (n = 62 [uninfected, n = 40; naturally infected, n = 22]) and white-tailed deer (n = 41 [uninfected, n = 25; naturally infected, n = 7; experimentally infected, n = 9]). To detect species specific molecules, components in the ethanol extract were analyzed by thin layer chromatography and western blotting. Results: Among the tested animals, 77.2% of infected cattle and 87.5% of infected deer tested positive for anti- M. bovis antibody. There were only minor false positive reactions (7.5% in cattle and 0% in deer) in uninfected animals. M. bovis -specific lipids and protein (MPB83) in the ethanol extract were detected by thin layer chromatography and western blotting, respectively. Conclusion: The results warrant further evaluation and validation of EVELISA for bovine TB diagnosis of traditional and alternative livestock as well as for free-ranging animal species

    Cryptosporidium Parvum-Induced Inflammatory Bowel Disease of TCR-β- x TCR-δ-Deficient Mice

    Get PDF
    Experimental inoculation of neonatal immunocompetent strains of mice with Cryptosporidium parvum results in a transient, noninflammatory enteric infection. In the present study, we show that inoculation of mice deficient in a 3 and y8 T cells (TCR-3- X TCR-8-deficient mice) with C. parvum results in persistent infection and severe inflammatory bowel disease- like lesions. The most severe lesions in these mice were in the cecum with similar yet less severe lesions in the ileum and proximal colon. The most notable aspect of the histopathology was glandular hyperplasia with abscess formation, extensive fibrosis of the lamina propria with infiltrates of predominately polymorphonuclear cells and macrophages, and a few small aggregates of B cells. Persistently infected mice also developed extensive hepatic periportal fibrosis in association with C. parvum colonization of bile ducts. Lesions observed in TCR- 3- X TCR-8-deficient mice were markedly different than previously described lesions detected in C. parvum-infected TCR-o-deficient mice. Cryptosporidium parvum-infected TCR-o-deficient mice have extensive infiltrations of B cells, whereas TCR-P3- X TCR-8-deficient mice had only a few small aggregates of B cells. These findings indicate that although y8 T cells are not necessary for induction of intestinal inflammation in C. parvum-infected o(4 T- cell-deficient mice, their presence does alter the morphology of the ensuing lesion

    Use of ethanol extract of Mycobacterium bovis for detection of specific antibodies in sera of farmed red deer (Cervus elaphus) with bovine tuberculosis

    Get PDF
    Background: Bovine tuberculosis (bTB) in wildlife species poses a threat to domestic livestock in many situations. Control programs for bTB in livestock depend on testing and slaughtering the positive animals; however, the currently available diagnostic tests often have poor specificity. In our previous study, we developed a specific and sensitive enzyme linked immunosorbent assay (ELISA) for another mycobacterial disease – Johne’s disease, using surface antigens of Mycobacterium avium ssp. paratuberculosis (MAP) extracted by briefly agitating the bacilli in 80% ethanol solution. The ELISA test was named ethanol vortex ELISA (EVELISA). The objective of this study is to examine whether EVELISA technique could be used to specifically detect anti-Mycobacterium bovis (M. bovis) antibodies in the serum of M. bovis-infected farmed red deer (Cervus elaphus). We tested a total of 45 red deer serum samples, divided in 3 groups – uninfected animals (n = 15), experimentally infected with M. bovis (n = 15) and experimentally infected with MAP (n = 15). Results: The presence of anti-M. bovis antibodies was tested using an ethanol extract of M. bovis. Without absorption of anti-MAP cross reactive antibodies, it was found that 13 out of the 15 MAP-infected animals showed high antibody binding. Using heat killed MAP as an absorbent of cross reactive antibodies, anti-M. bovis antibodies were detected in 86.7% of M. bovis-infected animals with minor false positive results caused by MAP infection. Conclusions: The results from this study suggest that EVELISA may form a basis for a sensitive and specific test for the diagnosis of bTB in farmed red deer
    corecore