303 research outputs found

    Analytical and numerical investigation of escape rate for a noise driven bath

    Get PDF
    We consider a system-reservoir model where the reservoir is modulated by an external noise. Both the internal noise of the reservoir and the external noise are stationary, Gaussian and are characterized by arbitrary decaying correlation functions. Based on a relation between the dissipation of the system and the response function of the reservoir driven by external noise we numerically examine the model using a full bistable potential to show that one can recover the turn-over features of the usual Kramers' dynamics when the external noise modulates the reservoir rather than the system directly. We derive the generalized Kramers' rate for this nonequilibrium open system. The theoretical results are verified by numerical simulation.Comment: Revtex, 25 pages, 5 figures. To appear in Phys. Rev.

    Using Nonlinear Response to Estimate the Strength of an Elastic Network

    Full text link
    Disordered networks of fragile elastic elements have been proposed as a model of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221, http://xyz.lanl.gov]. It is shown that the ratio Γ\Gamma of responses of such a network to static and periodic strain can be used to estimate its ultimate (or breaking) stress. Since bone fracture in older adults results from the weakening of porous bone, we discuss the possibility of using Γ\Gamma as a non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure

    The Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the type IĂ—fNI\times_{f} N

    Full text link
    In this work we study the spectral zeta function associated with the Laplace operator acting on scalar functions defined on a warped product of manifolds of the type IĂ—fNI\times_{f} N where II is an interval of the real line and NN is a compact, dd-dimensional Riemannian manifold either with or without boundary. Starting from an integral representation of the spectral zeta function, we find its analytic continuation by exploiting the WKB asymptotic expansion of the eigenfunctions of the Laplace operator on MM for which a detailed analysis is presented. We apply the obtained results to the explicit computation of the zeta regularized functional determinant and the coefficients of the heat kernel asymptotic expansion.Comment: 29 pages, LaTe

    Strength Reduction in Electrical and Elastic Networks

    Full text link
    Particular aspects of problems ranging from dielectric breakdown to metal insu- lator transition can be studied using electrical o elastic networks. We present an expression for the mean breakdown strength of such networks.First, we intro- duce a method to evaluate the redistribution of current due to the removal of a finite number of elements from a hyper-cubic network of conducatances.It is used to determine the reduction of breakdown strength due to a fracture of size Îş\kappa.Numerical analysis is used to show that the analogous reduction due to random removal of elements from electrical and elastic networks follow a similar form.One possible application, namely the use of bone density as a diagnostic tools for osteorosporosis,is discussed.Comment: one compressed file includes: 9 PostScrpt figures and a text fil

    The predictive value of the NICE "red traffic lights" in acutely ill children

    Get PDF
    Objective: Early recognition and treatment of febrile children with serious infections (SI) improves prognosis, however, early detection can be difficult. We aimed to validate the predictive rule-in value of the National Institute for Health and Clinical Excellence (NICE) most severe alarming signs or symptoms to identify SI in children. Design, Setting and Participants: The 16 most severe ("red") features of the NICE traffic light system were validated in seven different primary care and emergency department settings, including 6,260 children presenting with acute illness. Main Outcome Measures: We focussed on the individual predictive value of single red features for SI and their combinations. Results were presented as positive likelihood ratios, sensitivities and specificities. We categorised "general" and "disease-specific" red features. Changes in pre-test probability versus post-test probability for SI were visualised in Fagan nomograms. Results: Almost all red features had rule-in value for SI, but only four individual red features substantially raised the probability of SI in more than one dataset: "does not wake/stay awake", "reduced skin turgor", "non-blanching rash", and "focal neurological signs". The presence of ≥3 red features improved prediction of SI but still lacked strong rule-in value as likelihood ratios were below 5. Conclusions: The rule-in value of the most severe alarming signs or symptoms of the NICE traffic light system for identifying children with SI was limited, even when multiple red features were present. Our study highlights the importance of assessing the predictive value of alarming signs in clinical guidelines prior to widespread implementation in routine practice

    Strange stars in Krori-Barua space-time

    Full text link
    The singularity space-time metric obtained by Krori and Barua\cite{Krori1975} satisfies the physical requirements of a realistic star. Consequently, we explore the possibility of applying the Krori and Barua model to describe ultra-compact objects like strange stars. For it to become a viable model for strange stars, bounds on the model parameters have been obtained. Consequences of a mathematical description to model strange stars have been analyzed.Comment: 9 pages (two column), 12 figures. Some changes have been made. " To appear in European Physical Journal C

    The critical Ising model via Kac-Ward matrices

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on any finite graph G from the determinant of 2^{2g} matrices, where g is the genus of a surface in which G embeds. We show that in the case of isoradially embedded graphs with critical weights, these determinants have quite remarkable properties. First of all, they satisfy some generalized Kramers-Wannier duality: there is an explicit equality relating the determinants associated to a graph and to its dual graph. Also, they are proportional to the determinants of the discrete critical Laplacians on the graph G, exactly when the genus g is zero or one. Finally, they share several formal properties with the Ray-Singer \bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version

    Minimum mass-radius ratio for charged gravitational objects

    Get PDF
    We rigorously prove that for compact charged general relativistic objects there is a lower bound for the mass-radius ratio. This result follows from the same Buchdahl type inequality for charged objects, which has been extensively used for the proof of the existence of an upper bound for the mass-radius ratio. The effect of the vacuum energy (a cosmological constant) on the minimum mass is also taken into account. Several bounds on the total charge, mass and the vacuum energy for compact charged objects are obtained from the study of the Ricci scalar invariants. The total energy (including the gravitational one) and the stability of the objects with minimum mass-radius ratio is also considered, leading to a representation of the mass and radius of the charged objects with minimum mass-radius ratio in terms of the charge and vacuum energy only.Comment: 19 pages, accepted by GRG, references corrected and adde

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
    • …
    corecore