236 research outputs found

    The prevalence and impact of Fusarium Head Blight pathogens and mycotoxins on malting barley quality in UK

    Get PDF
    Fusarium head blight (FHB) caused by Fusarium and Microdochium species can significantly affect the yield of barley grain as well as the quality and safety of malt and beer. The present study provides new knowledge on the impacts of the FHB pathogen complex on the malting and brewing quality parameters of naturally infected barley. Quantitative real-time PCR and liquid chromatography double mass spectrometry were used to quantify the predominant FHB pathogens and Fusarium mycotoxins, respectively, in commercially grown UK malting barley samples collected between 2007 and 2011. The predominant Fusarium species identified across the years were F. poae, F. tricinctum and F. avenaceum. Microdochium majus was the predominant Microdochium species in 2007, 2008, 2010 and 2011 whilst Microdochium nivale predominated in 2009. Deoxynivalenol and zearalenone quantified in samples collected between 2007 and 2009 were associated with F. graminearum and F. culmorum, whilst HT-2 and T-2, and nivalenol in samples collected between 2010 and 2011 correlated positively with F. langsethiae and F. poae, respectively. Analysis of the regional distribution and yearly variation in samples from 2010 to 2011 showed significant differences in the composition of the FHB species complex. In most regions (Scotland, the South and North of England) the harvest in 2010 had higher concentrations of Fusarium spp. than in 2011, although no significant difference was observed in the Midlands between the two years. Microdochium DNA was significantly higher in 2011 and in the North of England and Scotland compared to the South or Midlands regions. Pathogens of the FHB complex impacted negatively on grain yield and quality parameters. Thousand grain weight of malting barley was affected significantly by M. nivale and M. majus whilst specific weight correlated negatively with F. avenaceum and F. graminearum. To determine the impact of sub-acute infections of the identified Fusarium and Microdochium species on malting and brewing quality of naturally infected samples, selected malting barley cultivars (Optic, Quench and Tipple) were micromalted and subjected to malt and wort analysis of key quality parameters. F. poae and M. nivale decreased germinative energy and increased water sensitivity of barley. The fungal biomass of F. poae and F. langsethiae correlated with increased wort free amino nitrogen and with decreased extract of malt. DNA of M. nivale correlated with increased malt friability as well as decreased wort filtration volume. The findings of this study indicate that the impact of species such as the newly emerging F. langsethiae, as well as F. poae and the two non-toxigenic Microdochium species should be considered when evaluating the quality of malting barley. © 2014

    In vitro growth characteristics of Fusarium langsethiae isolates recovered from oats and wheat grain in the UK

    Get PDF
    Fusarium langsethiae is a fungus that has recently been implicated in the contamination of small-grain cereal crops such as oats, wheat and barley with high levels of HT-2 and T-2 toxins in many European countries. The epidemiology of this fungus is not well known and may therefore be a bigger problem than currently thought to be. A study was carried out investigating the in vitro growth characteristics of F. langsethiae isolates from contaminated oats and wheat at various temperatures; 15, 20, 25 and 30 °C. Results indicated similar growth trends of oats and wheat isolates of F. langsethiae. Wheat isolates grew significantly (p<0.001) faster than oat isolates although this difference may have been confounded by the age of cultures, with oat isolates collected one year earlier. The estimated optimum growth temperature for all isolates was 24 °C. Isolates were macro-morphologically categorized as having lobed or entire colony margins, and either possessing one of the following colony colours: white, orange or purple. Since the estimated optimum growth temperature of F. langsethiae is typical in temperate summers when small-grain cereals are flowering, it is possible that this species can infect, colonise and possibly contaminate the developing grains with HT-2 and T-2 toxins which are of food safety concern

    Studies on the Interactions Between Fungicides, Alternaria tenuissima, Cladosporium herbarum and Microdochium spp., on Fusarium Head Blight (FHB) Development and Deoxynivalenol (DON) Concentration in Grain Caused by Fusarium culmorum

    Get PDF
    Saprophytic microflora and non-toxin producing Microdochium spp. capable of causing Fusarium head blight (FHB) have been suggested to affect the development of FHB caused by Fusarium spp., the occurrence of mycotoxins and the efficacy of fungicides for the control of the disease. The effects of metconazole and azoxystrobin on the interactions between Fusarium culmorum and Microdochium spp., Alternaria tenuissima or Cladosporium herbarum on FHB symptom development, Tri5 DNA concentration and deoxynivalenol (DON) production were studied under glasshouse conditions. Results indicated that the sequence of infection of wheat heads and the relative timing of fungicide application can significantly affect FHB severity and the resulting mycotoxin contamination of harvested grain. Introduction of A. tenuissima, C. herbarum or Microdochium spp. to wheat heads at GS 57 before inoculation with F. culmorum at GS 65 generally resulted in increased FHB severity, Tri5 DNA and DON concentration in harvested grain. The greatest increases of FHB severity (266%), Tri5 DNA (79%) and DON (152%) were observed when Microdochium spp. were introduced first at GS 57 and F. culmorum inoculation followed at GS 65. Metconazole generally reduced FHB severity, Tri5 DNA and DON concentration in grain but azoxystrobin was most efficient at reducing DNA of Microdochium spp. in grain

    Does the Red Queen reign in the kingdom of digital organisms?

    Get PDF
    In competition experiments between two RNA viruses of equal or almost equal fitness, often both strains gain in fitness before one eventually excludes the other. This observation has been linked to the Red Queen effect, which describes a situation in which organisms have to constantly adapt just to keep their status quo. I carried out experiments with digital organisms (self-replicating computer programs) in order to clarify how the competing strains' location in fitness space influences the Red-Queen effect. I found that gains in fitness during competition were prevalent for organisms that were taken from the base of a fitness peak, but absent or rare for organisms that were taken from the top of a peak or from a considerable distance away from the nearest peak. In the latter two cases, either neutral drift and loss of the fittest mutants or the waiting time to the first beneficial mutation were more important factors. Moreover, I found that the Red-Queen dynamic in general led to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure

    The Two-Nucleon Potential from Chiral Lagrangians

    Get PDF
    Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the general effective chiral lagrangian. The potential is obtained up to a certain order in chiral perturbation theory both in momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are presented, where satisfactory agreement is found for laboratory energies up to about 100 Mev.Comment: Postscript file; figures available by reques

    Self-organized criticality in deterministic systems with disorder

    Full text link
    Using the Bak-Sneppen model of biological evolution as our paradigm, we investigate in which cases noise can be substituted with a deterministic signal without destroying Self-Organized Criticality (SOC). If the deterministic signal is chaotic the universality class is preserved; some non-universal features, such as the threshold, depend on the time correlation of the signal. We also show that, if the signal introduced is periodic, SOC is preserved but in a different universality class, as long as the spectrum of frequencies is broad enough.Comment: RevTex, 8 pages, 8 figure

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Interacting new agegraphic viscous dark energy with varying GG

    Full text link
    We consider the new agegraphic model of dark energy with a varying gravitational constant, GG, in a non-flat universe. We obtain the equation of state and the deceleration parameters for both interacting and noninteracting new agegraphic dark energy. We also present the equation of motion determining the evolution behavior of the dark energy density with a time variable gravitational constant. Finally, we generalize our study to the case of viscous new agegraphic dark energy in the presence of an interaction term between both dark components.Comment: 12 pages, accepted for publication in IJTP (2010

    Does accelerating universe indicates Brans-Dicke theory

    Full text link
    The evolution of universe in Brans-Dicke (BD) theory is discussed in this paper. Considering a parameterized scenario for BD scalar field ϕ=ϕ0aα\phi=\phi_{0}a^{\alpha} which plays the role of gravitational "constant" GG, we apply the Markov Chain Monte Carlo method to investigate a global constraints on BD theory with a self-interacting potential according to the current observational data: Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. It is shown that an expanded universe from deceleration to acceleration is given in this theory, and the constraint results of dimensionless matter density Ω0m\Omega_{0m} and parameter α\alpha are, Ω0m=0.286−0.039−0.047+0.037+0.050\Omega_{0m}=0.286^{+0.037+0.050}_{-0.039-0.047} and α=0.0046−0.0171−0.0206+0.0149+0.0171\alpha=0.0046^{+0.0149+0.0171}_{-0.0171-0.0206} which is consistent with the result of current experiment exploration, ∣α∣≤0.132124\mid\alpha\mid \leq 0.132124. In addition, we use the geometrical diagnostic method, jerk parameter jj, to distinguish the BD theory and cosmological constant model in Einstein's theory of general relativity.Comment: 16 pages, 3 figure
    • …
    corecore