463 research outputs found
Five Dimensional Cosmological Models in General Relativity
A Five dimensional Kaluza-Klein space-time is considered in the presence of a
perfect fluid source with variable G and . An expanding universe is
found by using a relation between the metric potential and an equation of
state. The gravitational constant is found to decrease with time as whereas the variation for the cosmological constant follows as
, and
where is the equation of state parameter and is the scale factor.Comment: 13 pages, 4 figures, accepted in Int. J. Theor. Phy
Evolution of Microstructure and Texture during Warm Rolling Of a Duplex Steel
The effect of warm rolling on the evolution of microstructure and texture in a duplex stainless steel (DSS) was investigated. For this purpose, a DSS steel was warm rolled up to 90 pct reduction in thickness at 498 K, 698 K, and 898 K (225 °C, 425 °C, and 625 °C). The microstructure with an alternate arrangement of deformed ferrite and austenite bands was observed after warm rolling; however, the microstructure after 90 pct warm rolling at 498 K and 898 K (225 °C and 625 °C) was more lamellar and uniform as compared to the rather fragmented and inhomogeneous structure observed after 90 pct warm rolling at 698 K (425 °C). The texture of ferrite in warm-rolled DSS was characterized by the presence of the RD (〈011〉//RD) and ND (〈111〉//ND) fibers. However, the texture of ferrite in DSS warm rolled at 698 K (425 °C) was distinctly different having much higher fraction of the RD-fiber components than that of the ND-fiber components. The texture and microstructural differences in ferrite in DSS warm rolled at different temperatures could be explained by the interaction of carbon atoms with dislocations. In contrast, the austenite in DSS warm rolled at different temperatures consistently showed pure metal- or copper-type deformation texture which was attributed to the increase in stacking fault energy at the warm-rolling temperatures. It was concluded that the evolution of microstructure and texture of the two constituent phases in DSS was greatly affected by the temperature of warm rolling, but not significantly by the presence of the other phas
Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology
In this work, we have calculated the deceleration parameter, statefinder
parameters and EoS parameters for different dark energy models with variable
correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein
Cosmology. The statefinder parameters have been obtained in terms of some
observable parameters like dimensionless density parameter, EoS parameter and
Hubble parameter for holographic dark energy, new agegraphic dark energy and
generalized Chaplygin gas models.Comment: 9 pages, no figure, accepted for publication in IJTP. arXiv admin
note: text overlap with arXiv:1104.2366 by other author
Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels
The effect of finish rolling temperature (FRT) on the austenite- ()
to-bainite () phase transformation is quantitatively investigated in
high-strength C-Mn steels. In particular, the present study aims to clarify the
respective contributions of the conditioning during the hot rolling and the
variant selection (VS) during the phase transformation to the inherited
texture. To this end, an alternative crystallographic reconstruction procedure,
which can be directly applied to experimental electron backscatter diffraction
(EBSD) mappings, is developed by combining the best features of the existing
models: the orientation relationship (OR) refinement, the local pixel-by-pixel
analysis and the nuclei identification and spreading strategy. The
applicability of this method is demonstrated on both quenching and partitioning
(Q&P) and as-quenched lath-martensite steels. The results obtained on the C-Mn
steels confirm that the sample finish rolled at the lowest temperature
(829{\deg}C) exhibits the sharpest transformation texture. It is shown that
this sharp texture is exclusively due to a strong VS from parent brass
{110}, S {213} and Goss {110} grains, whereas the VS from the
copper {112} grains is insensitive to the FRT. In addition, a
statistical VS analysis proves that the habit planes of the selected variants
do not systematically correspond to the predicted active slip planes using the
Taylor model. In contrast, a correlation between the Bain group to which the
selected variants belong and the FRT is clearly revealed, regardless of the
parent orientation. These results are discussed in terms of polygranular
accommodation mechanisms, especially in view of the observed development in the
hot-rolled samples of high-angle grain boundaries with misorientation axes
between and
Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. Clinical features may be subtle and highly variable, making the diagnosis of PCD challenging. The diagnosis can be confirmed with ciliary ultrastructure analysis and/or molecular genetic testing of 32 PCD-associated genes. However, because of this genetic heterogeneity, comprehensive molecular genetic testing is not considered the standard of care, and the most efficient molecular approach has yet to be elucidated. Here, we propose a cost-effective and time-efficient molecular genetic algorithm to solve cases of PCD. We conducted targeted copy number variation (CNV) analysis and/or whole-exome sequencing on 20 families (22 patients) from a subset of 45 families (52 patients) with a clinical diagnosis of PCD who did not have a molecular genetic diagnosis after Sanger sequencing of 12 PCD-associated genes. This combined molecular genetic approach led to the identification of 4 of 20 (20%) families with clinically significant CNVs and 7 of 20 (35%) families with biallelic pathogenic mutations in recently identified PCD genes, resulting in an increased molecular genetic diagnostic rate of 55% (11/20). In patients with a clinical diagnosis of PCD, whole-exome sequencing followed by targeted CNV analysis results in an overall molecular genetic yield of 76% (34/45)
Effect of alloy treatment and coiling temperature on microstructure and bending performance of ultra-high strength strip steel
Two different high strength B-containing microalloyed steel strips produced in industrial processing conditions, one treated with Ti and the other treated with Al, processed by controlled rolling, accelerated cooling and coiling in two different temperatures ranges [723 K to 733 K (450 °C to 460 °C)] and [633 K to 653 K (360 °C to 380 °C)] were subjected to bend testing. The Ti treated steel coiled at the higher temperature 733 K (460 °C) showed the best bending performance. The relatively softer (tensile strength of and even {112} in the sub-surface region as well as uniformity of through thickness texture of the rolled sheet improve the bendability. In the presence of crack initiators, like coarse and brittle TiN particles found in the Ti treated steel, a harder microstructure and the presence of Cube and Goss texture in the sub-surface layer, seen for the lower coiling temperature can cause local transgranular cleavage cracking. Finally the post-uniform elongation obtained from tensile testing and bendability follow a good correlation
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
Azimuthal anisotropy at RHIC: the first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v_1),
and the fourth harmonic (v_4), in the azimuthal distribution of particles with
respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion
Collider (RHIC). Both measurements were done taking advantage of the large
elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it
is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data
tables are at
http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
Collaborative Hubs: Making the Most of Predictive Epidemic Modeling
The COVID-19 pandemic has made it clear that epidemic models play an important role in how governments and the public respond to infectious disease crises. Early in the pandemic, models were used to estimate the true number of infections. Later, they estimated key parameters, generated short-term forecasts of outbreak trends, and quantified possible effects of interventions on the unfolding epidemic. In contrast to the coordinating role played by major national or international agencies in weather-related emergencies, pandemic modeling efforts were initially scattered across many research institutions. Differences in modeling approaches led to contrasting results, contributing to confusion in public perception of the pandemic. Efforts to coordinate modeling efforts in so-called “hubs” have provided governments, healthcare agencies, and the public with assessments and forecasts that reflect the consensus in the modeling community. This has been achieved by openly synthesizing uncertainties across different modeling approaches and facilitating comparisons between them
Co-evolution, opportunity seeking and institutional change: Entrepreneurship and the Indian telecommunications industry 1923-2009
"This is an Author's Original Manuscript of an article submitted for consideration in Business History [copyright Taylor & Francis]; Business History is available online at http://www.tandfonline.com/." 10.1080/00076791.2012.687538In this paper, we demonstrate the importance for entrepreneurship of historical contexts and processes, and the co-evolution of institutions, practices, discourses and cultural norms. Drawing on discourse and institutional theories, we develop a model of the entrepreneurial field, and apply this in analysing the rise to global prominence of the Indian telecommunications industry. We draw on entrepreneurial life histories to show how various discourses and discursive processes ultimately worked to generate change and the creation of new business opportunities. We propose that entrepreneurship involves more than individual acts of business creation, but also implies collective endeavours to shape the future direction of the entrepreneurial field
- …