549 research outputs found

    Surface sampling within a pediatric ward—how multiple factors affect cleaning efficacy

    Get PDF
    BACKGROUND: The objectives of this study were to assess the number of organisms present on different surfaces within a clinical environment before and after cleaning took place, and to identify the impact of cleaning. The study involved extensive 2-week microbiological environmental monitoring of an entire ward before and after cleaning; the ward was located within a pediatric hematology-oncology ward comprised of a day unit and outpatient ward. METHODS: Tryptone soya agar contact plates were used to take a total of 1,160 surface samples before and after cleaning from 55 predetermined sites. Samples were taken from representative surfaces throughout the ward representing a variety of materials, surface heights, functions, and distances from patients, as well as both high-touch and infrequently touched surfaces. RESULTS: After surface cleaning was undertaken within the ward, there was a significant difference between the amount of colony-forming units (CFUs) recovered before and after cleaning (P < .0001). Cleaning produced an average CFU reduction of 68% throughout the ward environment. The corridor was the most contaminated area within the ward. There were differences in the CFUs among the various areas within the ward, which were cleaned with varying efficiency. The surface material, who interacted with the surface, levels of initial contamination, perceived risk, and perceived cleanability were all found to have a varying impact on the cleaning effectiveness. CONCLUSIONS: To the authors' current knowledge, this is the only study to assess cleaning within a pediatric ward by taking samples directly before and after cleaning. The standard of cleaning undertaken within the ward is open for discussion, and these data highlight the need for an improved cleaning intervention and can provide insight into the multitude of factors that must be considered when designing an effective training protocol

    Development and application of the GIM code for the Cyber 203 computer

    Get PDF
    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented

    Seismic signature of subduction termination from teleseismic P- and S-wave arrival-time tomography : the case of northern Borneo

    Get PDF
    Acknowledgments S.P. acknowledges support from the Natural Environmental Research Council (NERC) Grant NE/R013500/1 and from the European Union's Horizon 2020 Research and Innovation Program under Marie Skłodowska-Curie Grant Agreement 790203. We thank the TanDEM-X Science Communication Team (German Aerospace Center (DLR) e.V.) for providing TanDEM topographic data. We thank the NERC Geophysical Equipment Facility for loan 1038 and seismometers loaned by the University of Cambridge and Aberdeen. We would like to thank Zhong-Hai Li and an anonymous reviewer for their constructive feedback during the review process.Peer reviewedPostprin

    Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir

    Get PDF
    Ovarian cancer (OC) is most often contained within the peritoneal cavity, making it an ideal disease for adenoviral-delivered gene therapies. In effort to develop a safe and effective gene therapy for OC, we created a replication deficient adenovirus bearing the herpes simplex thymidine kinase (HSV-tk) gene under direction of the tumor specific promoter human epididymis protein 4 (HE4). The purpose of this study was to investigate the ability of our adenoviral construct to transduce OC cells in vitro and mediate transgene expression of HSV-tk, thereby sensitizing OC to the pro-drug ganciclovir. Cisplatin-sensitive (CS) and -resistant (CR) A2780 OC cells, infected with virus for 6 hours at 100, 500, and 1000 multiplicity of infection followed by ganciclovir treatment every other day for 5 days, were assayed for cell viability. Adenoviral-mediated transgene expression increased with increasing amounts of virus and peaked at 48 hours after transduction in both A2780-CS and -CR. Unexpectedly, ganciclovir alone was slightly toxic to both A2780 cell lines (IC50 of 234.9 μg/mL and 257.2 μg/mL in A2780-CS and -CR, respectively). Transduction with ADV-HE4-HSV-tk followed by ganciclovir treatment increased (P<0.05) cell killing up to ten-fold, lowering the IC50 to 23.9 μg/mL and 32.6 μg/mL in A2780-CS and -CR, respectively, at 1000 multiplicity of infection. The results support the potential use of this approach as a gene therapy for OC, a disease that accounts for more deaths than any other cancer of the female reproductive system

    Microscopy and supporting data for osteoblast integration within an electrospun fibrous network.

    Get PDF
    This data article contains data related to the research article entitled "3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration" by Stachewicz et al. [1]. In this paper we include additional data showing degradation analysis of poly(d,l-lactide-co-glycolide acid) (PLGA) electrospun fibers in medium and air using fiber diameter distribution histograms. We also describe the steps used in "slice and view" tomography techniques with focused ion beam (FIB) microscopy and scanning electron microscopy (SEM) and detail the image analysis to obtain 3D reconstruction of osteoblast cell integration with electrospun network of fibers. Further supporting data and detailed information on the quantification of cell growth within the electrospun nanofiber membranes is provided

    Does size matter? The impact of a small but targeted cleaning training intervention within a paediatric ward

    Get PDF
    Background: Cleaning is a critical tool for infection prevention and control, and is a key intervention for preventing healthcare associated infections (HCAIs) and controlling intermediate transmission routes between patient and environment. This study sought to identify potential areas of weakness in clinical surface cleaning, and assess the effectiveness of a staff group specific training intervention. Observations: One-hundred hours of audit observations in a paediatric cardiac intensive care unit (CICU) assessed surface cleaning technique of healthcare staff within bedspaces. Cleaning was assessed with a 5-component bundle, with each cleaning opportunity scored out of five. Training Intervention: Fifty hours of audit observations before and after a training intervention tested the efficacy of a staff group specific education intervention. The intervention was developed and implemented for 69% of nurses and 100% of cleaners. Results: One hundred and eighteen cleaning opportunities were observed before training, and scored an average of 2.4. One hundred and twenty-one cleaning opportunities were observed after training and scored an average 3.0. On average, before training, each cleaning opportunity by nurses and cleaners fulfilled 2.4 and 2.5, respectively, of the 5 bundle components. Following training, this improved to 3.3 and 2.9 respectively. There was a statistically significant improvement in bundle scores for nurses (P=.004) and cleaners (P=.0003). Conclusions: Surface wipe methods were inconsistent between all staff groups. The education based intervention resulted in a small improvement in most of the cleaning components. This study has identified how a small but targeted cleaning training intervention can have a significant (P= <.0001) impact on cleaning bundle compliance for both nurses and cleaners

    An active noise reduction system for aircrew helmets

    Get PDF
    An active noise reduction system was developed for use in aircrew flying helmets in which the acoustic noise field inside the ear defender is detected using a miniature microphone and an antiphase signal is fed back to a communications telephone within the ear defender. Performance of the active noise reduction system in a laboratory trial simulating flight conditions is shown to be satisfactory

    Put a tiger in your tank: the polyclad flatworm Maritigrella crozieri as a proposed model for evo-devo

    Get PDF
    Polyclad flatworms are an early branching clade within the rhabditophoran Platyhelminthes. They provide an interesting system with which to explore the evolution of development within Platyhelminthes and amongst Spiralia (Lophotrochozoa). Unlike most other flatworms, polyclads undergo spiral cleavage (similar to that seen in some other spiralian taxa), they are the only free-living flatworms where development via a larval stage occurs, and they are the only flatworms in which embryos can be reared outside of their protective egg case, enabling embryonic manipulations. Past work has focused on comparing early cleavage patterns and larval anatomy between polyclads and other spiralians. We have selected Maritigrella crozieri, the tiger flatworm, as a suitable polyclad species for developmental studies, because it is abundant and large in size compared to other species. These characteristics have facilitated the generation of a transcriptome from embryonic and larval material and are enabling us to develop methods for gene expression analysis and immunofluorescence techniques. Here we give an overview of M. crozieri and its development, we highlight the advantages and current limitations of this animal as a potential evo-devo model and discuss current lines of research

    Amplification and next generation sequencing of near full-length human enteroviruses for identification and characterisation from clinical samples

    Full text link
    © 2018, The Author(s). More than 100 different enterovirus (EV) genotypes infect humans and contribute to substantial morbidity. However, current methods for characterisation of full-length genomes are based on Sanger sequencing of short genomic regions, which are labour-intensive and do not enable comprehensive characterisation of viral populations. Here, we describe a simple and sensitive protocol for the amplification and sequencing of near full-length genomes of human EV species using next generation sequencing. EV genomes were amplified from 89% of samples tested, with Ct values ranging between 15.7 and 39.3. These samples included 7 EV-A genotypes (CVA2, 5–7, 10, 16 and EV71), 19 EV-B genotypes (CVA9, CVB1-6, ECHO3, 4, 6, 7, 9, 11, 16, 18, 25, 29, 30, and EV69), 3 EV-C genotypes (CVA19 and PV2, 3) and 1 EV-D genotype (EV70). We characterised 70 EVs from 58 clinical stool samples and eight reference strains, with a minimum of 100X depth. We found evidence of co-infection in four clinical specimens, each containing two distinct EV genotypes (CVB3/ECHO7, CVB3/ECHO18 and ECHO9/30). Characterisation of the complete genome provided conclusive genotyping of EVs, which can be applied to investigate the intra-host virus evolution of EVs, and allows further identification and investigation of EV outbreaks
    corecore