291 research outputs found

    Strange fruit: The reification of race and the myth of official multiculturalism in selected Canadian media.

    Get PDF
    This thesis investigates the concept of \u27race\u27 and its place within the discourse of \u27official multiculturalism\u27 in the Canadian context. More specifically, I explore the ways that \u27race\u27 has been coded in the popular media in my examination of selected articles from the Toronto Star\u27s coverage of: Philippe Rushton, human genome research, and racial profiling practiced by the Toronto Police Service. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .A33. Source: Masters Abstracts International, Volume: 44-03, page: 1244. Thesis (M.A.)--University of Windsor (Canada), 2005

    Atomic Diffusion within Individual Gold Nanocrystal

    Get PDF
    Due to their excess surface free energy and structural instabilities, nanoparticles exhibit interesting physical and chemical properties. There has been an ever-growing interest in investigating these properties, driven by the desire to further miniaturize electronic devices, develop new functional materials and catalysts. Here, the intriguing question of how diffusion evolves in a single nanoparticle is investigated by measuring the spatial and temporal variations of the diffracted coherent X-ray intensity during copper diffusion into a gold nanocrystal. Dislocation loops formed from the insertion of single layer of extra atoms between neighbouring gold host lattice planes are detected. Au-Cu alloy channels are found to penetrate the nanocrystal due to the differential diffusion rate along different directions. With the advent of higher brilliance sources and free-electron-lasers, Bragg Coherent X-ray Diffraction Imaging can play an important role in unveiling atomic behaviours in three dimensions for nanomaterials during various fundamental processes

    Star formation in the massive cluster merger Abell 2744

    Full text link
    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.Comment: Accepted by MNRAS. 12 pages, 7 figures (high resolution versions of Figs. 1 & 2 are available in the published PDF

    LoCuSS: The steady decline and slow quenching of star formation in cluster galaxies over the last four billion years

    Full text link
    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15<z<0.30 from the Local Cluster Substructure Survey (LoCuSS), combining wide-field Spitzer 24um data with extensive spectroscopy of cluster members. The specific-SFRs of massive (M>10^10 M_sun) star-forming cluster galaxies within r200 are found to be systematically 28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7-sigma level. This is the unambiguous signature of star formation in most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their SFRs declining exponentially on quenching time-scales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f_SF) of massive (M_K3M_sun/yr, of the form f_SF (1+z)^7.6. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ~3x decline in the mean specific-SFRs of star-forming cluster galaxies since z~0.3 with a ~1.5x decrease in number density. Two-thirds of this reduction in the specific-SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific-SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star-formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intra-cluster medium via ram-pressure stripping or starvation mechanisms. We find no evidence for the build-up of cluster S0 bulges via major nuclear star-burst episodes.Comment: 24 pages, 12 figures. Accepted for publication in Ap

    Spectroscopic ellipsometry of nanocrystalline diamond film growth

    Get PDF
    With the retention of many of the unrivaled properties of bulk diamond but in thin-film form, nanocrystalline diamond (NCD) has applications ranging from micro-/nano-electromechanical systems to tribological coatings. However, with Young’s modulus, transparency, and thermal conductivity of films all dependent on the grain size and nondiamond content, compositional and structural analysis of the initial stages of diamond growth is required to optimize growth. Spectroscopic ellipsometry (SE) has therefore been applied to the characterization of 25−75 nm thick NCD samples atop nanodiamond-seeded silicon with a clear distinction between the nucleation and bulk growth regimes discernable. The resulting presence of an interfacial carbide and peak in nondiamond carbon content upon coalescence is correlated with Raman spectroscopy, whereas the surface roughness and microstructure are in accordance with values provided by atomic force microscopy. As such, SE is demonstrated to be a powerful technique for the characterization of the initial stages of growth and hence the optimization of seeding and nucleation within films to yield high-quality NCD

    An evaluation of a nurse led unit: an action research study

    Get PDF
    This study is an exemplar of working in a participatory way with members of the public and health and social care practitioners as co-researchers. A Nurse Consultant Older People working in a nurse-led bed, intermediate care facility in a community hospital acted as joint project lead with an academic researcher. From the outset, members of the public were part of a team of 16 individuals who agreed an evaluation focus and were involved in all stages of the research process from design through to dissemination. An extensive evaluation reflecting all these stakeholders’ preferences was undertaken. Methods included research and audit including: patient and carer satisfaction questionnaire surveys, individual interviews with patients, carers and staff, staff surveys, graffiti board, suggestion box, first impressions questionnaire, patient tracking and a bed census. A key aim of the study has been capacity building of the research team members which has also been evaluated. In terms of impact, the co-researchers have developed research skills and knowledge, grown in confidence, developed in ways that have impacted elsewhere in their lives, developed posters, presented at conferences and gained a better understanding of the NHS. The evaluation itself has provided useful information on the processes and outcomes of intermediate care on the ward which was used to further improve the service

    Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    Get PDF
    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882, source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6+2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is $54 ”^(-1) M_⊙ yr^(−1), and its dust mass is about 5 × 10^7 ”^(-1) M_⊙, where ÎŒ is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium
    • 

    corecore