24 research outputs found

    Stock structure analysis of Splendid ponyfish Eubleekeria splendens (Cuvier, 1829) along Indian coast using truss network system

    Get PDF
    434-443Eubleekeria splendens (Cuvier, 1829) also called Splendid ponyfish, is commercially important and has wide distribution along the Indian coast. The species shows dominance along the south-west and south-east coast but there is no detailed information on the stock structure available from Indian waters. Therefore the present study focused on understanding the stock structure based on putative spawning stock. Fish samples were collected from five locations: Three from the west and two from the east coast. Twenty-four morphometric variables were measured using a box-truss network method. Principal component analysis delineated the population into east and west coast stocks. With respect to locations, each sampling unit formed separate clusters, thus representing isolated stocks. The samples from Mangaluru produced a single clustering with Kozhikode samples indicating that the morphological profiles of these two populations are homogeneous. Multiple comparisons on the factor scores indicated two independent stocks on the east coast, whereas the fishery on the west coast is replenished by a single stock on south-west coast but a separate stock on the north-west coast. Thus, information on the spatial structure of phenotypic stock makes it mandatory to understand the biology and dynamics of these isolated stocks of E. splendens separately and thereby a traditional stock assessment should be performed to estimate current resource status stock-wise in terms of biological reference points

    Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy

    Get PDF
    Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E(2) (PGE(2)). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment

    Genetic landscape of common epilepsies: advancing towards precision in treatment

    Get PDF
    Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management

    Calendario para el Reyno de Valencia...: Año 1902

    Get PDF
    Microfilme. Valencia : BV, ca. 1990Recurso electrónico. Valencia : BVNP, 20141902_A_95667

    A systematic review and integrative approach to decode the common molecular link between levodopa response and Parkinson’s disease

    No full text
    Abstract Background PD is a progressive neurodegenerative disorder commonly treated by levodopa. The findings from genetic studies on adverse effects (ADRs) and levodopa efficacy are mostly inconclusive. Here, we aim to identify predictive genetic biomarkers for levodopa response (LR) and determine common molecular link with disease susceptibility. A systematic review for LR was conducted for ADR, and drug efficacy, independently. All included articles were assessed for methodological quality on 14 parameters. GWAS of PD were also reviewed. Protein-protein interaction (PPI) analysis using STRING and functional enrichment using WebGestalt was performed to explore the common link between LR and PD. Results From 37 candidate studies on levodopa toxicity, 18 genes were found associated, of which, CAn STR 13, 14 (DRD2) was most significantly associated with dyskinesia, followed by rs1801133 (MTHFR) with hyper-homocysteinemia, and rs474559 (HOMER1) with hallucination. Similarly, 8 studies on efficacy resulted in 4 genes in which rs28363170, rs3836790 (SLC6A3) and rs4680 (COMT), were significant. To establish the molecular connection between LR with PD, we identified 35 genes significantly associated with PD. With 19 proteins associated with LR and 35 with PD, two independent PPI networks were constructed. Among the 67 nodes (263 edges) in LR, and 62 nodes (190 edges) in PD pathophysiology, UBC, SNCA, FYN, SRC, CAMK2A, and SLC6A3 were identified as common potential candidates. Conclusion Our study revealed the genetically significant polymorphism concerning the ADRs and levodopa efficacy. The six common genes may be used as predictive markers for therapy optimization and as putative drug target candidates

    Validating a Genomic Convergence and Network Analysis Approach Using Association Analysis of Identified Candidate Genes in Alzheimer’s Disease

    No full text
    Previously, we demonstrated an integrated genomic convergence and network analysis approach to identify the candidate genes associated with the complex neurodegenerative disorder, Alzheimer's disease (AD). Here, we performed a pilot study to validate the in silico approach by studying the association of genetic variants from three identified critical genes, APOE, EGFR, and ACTB, with AD. A total of 103 patients with AD and 146 healthy controls were recruited. A total of 46 single-nucleotide polymorphisms (SNPs) spanning the three genes were genotyped, of which only 19 SNPs were included in the final analyses after excluding non-polymorphic and Hardy-Weinberg equilibrium-violating SNPs. Apart from our previously reported APOE ε4, four other SNPs in APOE (rs405509, rs7259620, -rs769449, and rs7256173), one in EGFR (rs6970262), and one in ACTB (rs852423) showed a significant association with AD (p < 0.05). Our results validate the reliability of genomic convergence and network analysis approach in identifying the AD-associated candidate genes

    Multidrug efflux transporter ABCG2: expression and regulation

    No full text
    The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology
    corecore