12 research outputs found

    Decomposition of Organic Matter in Caves

    Get PDF
    Decomposition of organic matter is a process, which includes mostly physical breakdown and biochemical transformation of complex organic molecules into simpler organic and inorganic molecules. The decomposition of organic matter is an important contributor to ecosystem respiration, which together with photosynthesis controls the net carbon emission from ecosystems. Subterranean ecosystems are extended all over the subsurface of our planet, and lack of light and consequently of photosynthetic activity. Understanding the drivers that control the dynamics of the decomposition processes in the deep subterranean spaces is important because they might differ from those at surface, due to factors as low species diversity and abundance, low microbial biomass, nutrient poor conditions, less pronounced variation of temperature, and higher humidity inside cave. Here, we review the existing studies of organic matter decomposition in caves. Decomposition rates are known from only nine caves representing four biogeographic regions, including Europe, North and South America. Most of the studies were performed in the aquatic compartment of caves. The decay of nine different organic substrates have been followed and the incubation time varied from 36 to 439 days. From a cave located in Australia the mass loss of leaf material from three plant species was investigated after 9 days incubation in the terrestrial compartment of the cave. Based on these observations, litter quality seems to be an important driver of decomposition in caves, and invertebrates have a stimulating effect on the decomposition within individual cave zones. The degree of connection to the surface also influences decomposition rate inside the cave. The lack of standard data among the studies is currently the major impediment to evaluate how differently the process proceeds in the underground compared to the surface, and to disentangle the main drivers of decomposition in caves across biomes. Improving our understanding of organic matter decomposition dynamics in caves will require the standardization of protocols and evaluation of the process over space and time, and a better comprehension on how decomposition changes over latitudinal, altitudinal and depth gradients.info:eu-repo/semantics/publishedVersio

    Comparable early-stage decomposition but contrasting underlying drivers between surface and cave habitats along an elevational gradient

    Get PDF
    Decomposition is a major contributor to ecosystem respiration, determining the carbon emission and nutrient cycling rates. Our current understanding of decomposition dynamics and their underlying drivers has mainly focused on surface habitats but largely ignored in subterranean environments. Here we studied abiotic and microbial drivers of early-stage litter decomposition inside and outside caves along an elevational gradient in Tenerife. We found comparable decomposition rates (k) and litter stabilizing factors (S), with contrasting drivers and elevational variation. At the surface, we observed a mid-elevational trend in k, which tended to correlate with water availability, cooler temperatures, nutrient availability, and surface-specific bacterial taxa. In sharp contrast, caves showed no elevational impact nor influence of abiotic parameters and bacterial communities on k. Despite this, we found higher levels of S in caves, which were associated mainly with reduced water availability, lower temperatures and cave-specific bacterial taxa, indicating that conditions in caves are strongly linked with carbon storage. Our findings imply that our current perception of terrestrial habitat-based carbon cycling are underestimating the net carbon budget in areas with caves. Disentangling the role of the environment on decomposition in caves is key to fully characterize their roles in nutrient cycling and to understand how increasing anthropogenic pressures will affect fundamental processes in subterranean ecosystems.info:eu-repo/semantics/publishedVersio

    Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil

    Get PDF
    Background: Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. Results: Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacte‑ rial communities in caves were compositionally diferent, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communi‑ ties. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. Conclusions: Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient infux, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the founda‑ tion to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.info:eu-repo/semantics/publishedVersio

    Carbon dioxide exchange in the Arctic:The effect of a changing climate on soil carbon turnover in tundra heaths

    No full text

    Comparable early-stage decomposition but contrasting underlying drivers between surface and cave habitats along an elevational gradient

    No full text
    Decomposition is a major contributor to ecosystem respiration, determining the carbon emission and nutrient cycling rates. Our current understanding of decomposition dynamics and their underlying drivers has mainly focused on surface habitats but largely ignored in subterranean environments. Here we studied abiotic and microbial drivers of early-stage litter decomposition inside and outside caves along an elevational gradient in Tenerife. We found comparable decomposition rates (k) and litter stabilizing factors (S), with contrasting drivers and elevational variation. At the surface, we observed a mid-elevational trend in k, which tended to correlate with water availability, cooler temperatures, nutrient availability, and surface-specific bacterial taxa. In sharp contrast, caves showed no elevational impact nor influence of abiotic parameters and bacterial communities on k. Despite this, we found higher levels of S in caves, which were associated mainly with reduced water availability, lower temperatures and cave-specific bacterial taxa, indicating that conditions in caves are strongly linked with carbon storage. Our findings imply that our current perception of terrestrial habitat-based carbon cycling are underestimating the net carbon budget in areas with caves. Disentangling the role of the environment on decomposition in caves is key to fully characterize their roles in nutrient cycling and to understand how increasing anthropogenic pressures will affect fundamental processes in subterranean ecosystems
    corecore