17 research outputs found

    The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    Get PDF
    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed

    Observational evidence for the plausible linkage of Equatorial Electrojet (EEJ) electric field variations with the post sunset F-region electrodynamics

    Get PDF
    The paper is based on a detailed observational study of the Equatorial Spread F (ESF) events on geomagnetically quiet (<I>A<sub>p</sub></I>≤20) days of the solar maximum (2001), moderate (2004) and minimum (2006) years using the ionograms and magnetograms from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat ~0.5° N) in India. The study brings out some interesting aspects of the daytime Equatorial Electrojet (EEJ) related electric field variations and the post sunset F-region electrodynamics governing the nature of seasonal characteristics of the ESF phenomena during these years. The observed results seem to indicate a plausible linkage of daytime EEJ related electric field variations with pre-reversal enhancement which in turn is related to the occurrence of ESF. These electric field variations are shown to be better represented through a parameter, termed as "E", in the context of possible coupling between the E- and F-regions of the ionosphere. The observed similarities in the gross features of the variations in the parameter "E" and the F-region vertical drift (<I>V<sub>z</sub></I>) point towards the potential usage of the EEJ related parameter "E" as an useful index for the assessment of <I>V<sub>z</sub></I> prior to the occurrence of ESF

    A scanning electron microscopic study of the patterns of external root resorption under different conditions

    Get PDF
    OBJECTIVE: The aim of this study was to examine if there are qualitative differences in the appearance of external root resorption patterns of primary teeth undergoing physiologic resorption and permanent teeth undergoing pathological root resorption in different conditions. MATERIAL AND METHODS: A total of 40 teeth undergoing external root resorption in different conditions were divided into 4 groups and prepared for examination under scanning electron microscopy at magnifications ranging from 20x to 1000x. Group I: 10 primary molars exfoliated due to physiologic root resorption; Group II: 10 permanent teeth with periapical granulomas showing signs of resorption; Group III:10 permanent teeth therapeutically extracted during the course of orthodontic therapy with evidence of resorption, and Group IV: 10 permanent teeth associated with odontogenic tumors that showed evidence of resorption. RESULTS: In Group I, the primary teeth undergoing resorption showed smooth extensive and predominantly regular areas reflecting the slow ongoing physiologic process. In Group II, the teeth with periapical granulomas showed the resorption was localized to apex with a funnel shaped appearance in most cases. Teeth in Group III, which had been subjected to a short period of light orthodontic force, showed the presence of numerous resorption craters with adjoining areas of cemental repair in some cases. Teeth associated with odontogenic tumors in Group IV showed many variations in the patterns of resorption with extensive loss of root length and a sharp cut appearance of the root in most cases. CONCLUSION: Differences were observed in the patterns of external root resorption among the studied groups of primary and permanent teeth under physiologic and pathological conditions

    Role of gravity wave like seed perturbations on the triggering of ESF - a case study from unique dayglow observation

    Get PDF
    First observational evidence, from the Indian longitudes, for the presence of gravity wavelike perturbations with periods of 20-30 min, acting as probable seeds for Equatorial Spread F (ESF) irregularities is described. The study is based on the daytime optical measurements of the mesopause temperature and the intensity of the thermospheric O(1D) 630.0 nm dayglow emissions using the unique MultiWavelength Dayglow PhotoMeter from Trivandrum (8.5° N; 77° E; dip lat ˜0.5° N), a dip equatorial station. Measurements during the equinoctial months of a solar maximum (2001) and a solar minimum year (2006) have been used in this study. It is shown that under identical background ionospheric conditions within a solar epoch, the power of the gravity waves have a deterministic role in the generation of ESF. The mesopause temperature simultaneously observed, indicate that possible source regions for these perturbations lie in the lower atmosphere

    Electrodynamics of the equatorial F-region ionosphere during pre-sunrise period

    Get PDF
    The electrodynamics of the pre-sunrise equatorial F-region is investigated using HF Doppler radar and digital ionosonde. The observations are limited to those days for which the radar probing frequency is below the Æ’oF2 value. The ionosphere observation using HF Doppler radar exhibit interesting features during pre-sunrise period similar to the post sunset pre-reversal enhancement. The most striking feature observed during pre-sunrise period is the sudden downward excursion in the vertical drift around local sunrise followed by an upward turning. Pre-sunrise observations of vertical plasma drift and the sunrise downward excursion followed by an upward turning after the ground sunrise related to the zonal electric field at the equatorial F-region are the most significant results not reported earlier

    Features of the F3 layer occurrence over the equatorial location of Trivandrum

    No full text
    The general features of the F3 layer occurrence over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat ~0.5° N) in India during the period from 1996–2005 are presented using the ionosonde observations. The study brings out that the F3 layer occurrence over Trivandrum is weak and rare compared to the other equatorial locations. The F3 layer occurrence is relatively more pronounced during the magnetically active conditions, thus indicating the dependence of the layer formation over Trivandrum on magnetic activity. It is also observed that the percentage occurrence of the F3 layer decreases with increasing solar activity

    Solar cycle dependent characteristics of the equatorial blanketing E<sub><i>s</i></sub> layers and associated irregularities

    No full text
    International audienceThe occurrence of blanketing type Es (Esb) layers and associated E-region irregularities over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip ~0.5°) during the summer solstitial months of May, June, July and August has been investigated in detail for the period 1986?2000 to bring out the variabilities in their characteristics with the solar cycle changes. The study has been made using the ionosonde and magnetometer data of Trivandrum from 1986?2000 along with the available data from the 54.95 MHz VHF backscatter radar at Trivandrum for the period 1995?2000. The appearance of blanketing Es layers during these months is observed to be mostly in association with the occurrence of afternoon Counter Electrojet (CEJ) events. The physical process leading to the occurrence of a CEJ event is mainly controlled by the nature of the prevailing electro dynamical/neutral dynamical conditions before the event. Hence it is natural that the Esb layer characteristics like the frequency of occurrence, onset time, intensity, nature of gradients in its top and bottom sides etc are also affected by the nature of the background electro dynamical /neutral dynamical processes which in turn are strongly controlled by the solar activity changes. The occurrence of Esb layers during the solstitial months is found to show very strong solar activity dependence with the occurrence frequency being very large during the solar minimum years and very low during solar maximum years. The intensity of the VHF radar backscattered signals from the Esb irregularities is observed to be controlled by the relative roles of the direction and magnitude of the prevailing vertical polarization electric field and the vertical electron density gradient of the prevailing Esb layer depending on the phase of the solar cycle. The gradient of the Esb layer shows a more dominant role in the generation of gradient instabilities during solar minimum periods while it is the electric field that has a more dominant role during solar maximum periods

    Solar cycle dependent characteristics of the equatorial blanketing E<sub><i>s</i></sub> layers and associated irregularities

    No full text
    The occurrence of blanketing type Es (Esb) layers and associated E-region irregularities over the magnetic equatorial location of Trivandrum (8.5&deg; N; 77&deg; E; dip ~0.5&deg;) during the summer solstitial months of May, June, July and August has been investigated in detail for the period 1986&ndash;2000 to bring out the variabilities in their characteristics with the solar cycle changes. The study has been made using the ionosonde and magnetometer data of Trivandrum from 1986&ndash;2000 along with the available data from the 54.95 MHz VHF backscatter radar at Trivandrum for the period 1995&ndash;2000. The appearance of blanketing Es layers during these months is observed to be mostly in association with the occurrence of afternoon Counter Electrojet (CEJ) events. The physical process leading to the occurrence of a CEJ event is mainly controlled by the nature of the prevailing electro dynamical/neutral dynamical conditions before the event. Hence it is natural that the Esb layer characteristics like the frequency of occurrence, onset time, intensity, nature of gradients in its top and bottom sides etc are also affected by the nature of the background electro dynamical /neutral dynamical processes which in turn are strongly controlled by the solar activity changes. The occurrence of Esb layers during the solstitial months is found to show very strong solar activity dependence with the occurrence frequency being very large during the solar minimum years and very low during solar maximum years. The intensity of the VHF radar backscattered signals from the Esb irregularities is observed to be controlled by the relative roles of the direction and magnitude of the prevailing vertical polarization electric field and the vertical electron density gradient of the prevailing Esb layer depending on the phase of the solar cycle. The gradient of the Esb layer shows a more dominant role in the generation of gradient instabilities during solar minimum periods while it is the electric field that has a more dominant role during solar maximum periods
    corecore