11 research outputs found

    Endophytic Fungi as Novel Resources of natural Therapeutics

    Full text link

    Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India

    No full text
    The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 ÎŒgÎŒl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 ÎŒgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 ÎŒgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 ÎŒgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules

    Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn. f.: Spatiotemporal and tissue type effects

    No full text
    Fungal endophytes were isolated from leaf, bark and stem of Tectona grandis Linn.f. sampled at four geographical locations in winter, summer and monsoon seasons. The recovered 5089 isolates were assigned to 45 distinct morphotypes based on morphology. The sequences of the internal transcribed spacers (ITS) of the nrDNA of some morphotypes were identical, but morphological differences were strong enough to consider these morphotypes as separate species. Forty-three morphotypes were assigned to ascomycotina and two to basidiomycotina. Ascomycotina was the predominating group with 99.7% of total isolates followed by basidiomycotina with only 0.3% of total isolates. Diaporthe (Phomopsis) species dominated the communities independently on tissue type, location or season. More than 60% of the examined tissue pieces were colonized by members of this species complex. While these endophytes are ubiquitous others were tissue or location specific. Tissue type had the strongest effect on the species evenness of the endophytic assemblage followed by geographical location and season. However, Shannon-Wiener index (H’) significantly (p ≀ 0.001) varied with all three factors i.e. season, location and tissue type. Leaves supported the highest diversity across all the seasons and locations. In conclusion, all the three factors together determined the structure of endophytic mycobiota assemblage of T. grandis.ISSN:2045-232

    Induction of Cryptic and Bioactive Metabolites through Natural Dietary Components in an Endophytic Fungus Colletotrichum gloeosporioides (Penz.) Sacc.

    No full text
    Grape skin and turmeric extracts having the major components resveratrol and curcumin, respectively, were used for the induction of cryptic and bioactive metabolites in an endophytic fungus Colletotrichum gloeosporioides isolated from Syzygium cumini. The increase in total amount of crude compounds in grape skin and turmeric extract treated cultures was 272.48 and 174.32%, respectively, compared to the untreated control. Among six human pathogenic bacteria tested, the maximum inhibitory activity was found against Aeromonas hydrophila IMS/GN11 while no inhibitory activity was observed against Enterococcus faecalis IMS/GN7. The crude compounds derived from turmeric extract treated cultures showed the highest DPPH free radicals scavenging activity (86.46% inhibition) followed by compounds from grape skin treated cultures (11.80% inhibition) and the control cultures (1.92% inhibition). Both the treatments significantly (p ≀ 0.05) increased the antibacterial and antioxidant activities of crude metabolites compared to the control. HPLC profiling of crude compounds derived from grape skin and turmeric extract treated cultures revealed the presence of additional 20 and 14 cryptic compounds, respectively, compared to the control. These findings advocate the future use of such dietary components in induced production of cryptic and bioactive metabolites

    Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential

    No full text
    Chrysophanol is a unique anthraquinone having broad-spectrum therapeutic potential along with ecological importance. It is the first polyketide that has been reported to be biosynthesized in an organism-specific manner. The traditional Chinese and Korean medicinal systems provide evidence of the beneficial effects of chrysophanol on human health. The global distribution of chrysophanol encountered in two domains of life (bacteria and eukaryota) has motivated researchers to critically evaluate the properties of this compound. A plethora of literature is available on the pharmacological properties of chrysophanol, which include anticancer, hepatoprotective, neuroprotective, anti-inflammatory, antiulcer, and antimicrobial activities. However, the pharmacokinetics and toxicity studies on chrysophanol demand further investigations for it to be used as a drug. This is the first comprehensive review on the natural sources, biosynthetic pathways, and pharmacology of chrysophanol. Here we reviewed recent advancements made on the pharmacokinetics of the chrysophanol. Additionally, we have highlighted the knowledge gaps of its mechanism of action against diseases and toxicity aspects

    IMA Genome - F13 : Draft genome sequences of Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti

    Get PDF
    CITATION: Wilken, P. M., et al. 2020. IMA Genome - F13 : Draft genome sequences of Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti. IMA Fungus, 11:19, doi:10.1186/s43008-020-00039-7The original publication is available at https://imafungus.biomedcentral.comDraft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.https://imafungus.biomedcentral.com/articles/10.1186/s43008-020-00039-7Publisher's versio
    corecore