127 research outputs found

    Ultra-wideband position tracking on an assembly line

    Get PDF
    This works considers the problem of tracking objects on an assembly line using an ultra-wideband (UWB) positioning system. Assembly line tracking can be accomplished using touch sensors that physically detect when an object reaches a given location. Such tracking requires sensors placed throughout the entire assembly line, and only provides readings at the sensor locations. In contrast, UWB position tracking utilizes a set of sensors surrounding the whole area, enabling continuous position tracking with less infrastructure. Similar tracking can be accomplished using radio frequency identication (RFID) sensing, but this only provides readings when the parts are near RFID readers. The advantage of UWB position tracking is that it can provide sensor readings continuously throughout the entire tracking area. However, UWB position estimates are noisy, typically having an accuracy of 30-100 cm in a room-to-building sized area. This accuracy is sucient for monitoring which part of an assembly line a part is currently traversing, but is not accurate enough to enable precise tooling or positioning. In this work, we are using a map of an assembly line to constrain the motion tracking. This is similar to how a road map can be used to constrain position tracking for a GPS sensor. The idea is that the raw sensor measurements are constrained by the a priori known map of motion along the assembly line. We use these constraints and design a particle filter to improve position tracking accuracy

    Minimum and Maximum Limit to Number of Myosin II Motors Participating in an Ensemble Motility

    Get PDF
    Extensive research on centrifugal compressors has been planned to define diffuser stall limits for a group of stages characterized by low blade-outlet-width-to-impeller-radius-ratio. Very little data is available on this centrifugal compressor family, especially for the last stage configuration. In addition, the most important stall diffuser prediction criteria barely cover this machine type. Many experimental tests have been planned to investigate several geometry variations. A simulated stage with a backward channel upstream, a 2D impeller with a vaneless diffuser and a constant cross section volute downstream constitute the basic geometry. Several diffuser geometries with different widths, pinch shapes, diffusion ratios were tested. Test results and conclusions are shown in the paper in terms of critical diffuser inlet flow angles, flow coefficients at stall inception and stage working ranges. The main task of the present work is to increase the knowledge and the amount of available data to characterize rotating stall phenomena, in particular for very narrow stages

    ANALYSIS OF MOLECULAR DOCKING EFFICIENCY OF CLEISTANTHIN-A, AS AN ALTERNATIVE FOR NICOTINE ADDICTION

    Get PDF
    Objective: The present research was aimed to understand the molecular docking efficiency of a plant-derived compound cleistanthin-A and a common ingredient in tobacco consumption nicotine with nicotinic acetylcholine receptor (nAChR).Methods: The 3-D structure of nAChR was retrieved from the protein data bank (ID 5AFH). Ligand was obtained from the PUBCHEM. The in silico protocol comprised of three steps: high-throughput virtual screening (HTVS), standard preci­sion (SP) and extra precision (XP). The screened molecules were ranked accordingly using glide score. Schrödinger tool was used to perform the docking analysis.Results: The binding efficiency of the nicotine and cleistanthin-A was found to be docked at the cys-cys loop of the receptor. Based upon the glide score and glide energy it can be reported that, nicotine binding can be inhibited by the binding of cleistanthin-A to the nAChR.Conclusion: The docking efficiency of cleistanthin-A was good compared to nicotine towards nAChR. Hence, cleistanthin–A was derived as a better choice as an alternative for nicotine in smoke therapy

    Development of highly intensified cell culture perfusion media and process with tremendous productivity potential, while having a low cell bleed requirement for maintaining an overall high yield

    Get PDF
    Process intensification leveraging perfusion offers immense opportunities for yield improvement over fed-batch processes for the production of monoclonal antibodies. In the context of continuous processing, the goal is to achieve highly intensified perfusion processes that allow substantial footprint reduction and enable flexible adaptation in new facilities. Developing a productive and efficient perfusion process requires not only the application of the “push-to-low” concept for reducing the perfusion rate requirement, but also requires in-depth mechanistic development of medium formulations in order to decrease byproduct waste generation, reduce unproductive cell growth and increase productivity. Specifically reducing the usage of cell bleed is particularly desirable for improving the overall yield, since as much as 30% of the generated product may be lost through the use of cell bleed. In this work, we share case studies of perfusion medium development studying classical components such as vitamins and salts that can be manipulated to have profound effect for controlling the cell growth and reducing the use of cell bleed. In one case, the cell bleed rate was reduced down to as low as zero, while still being able to maintain a highly viable culture. Furthermore, in some cases, significant increase in the cell specific productivity (qp) was achieved when the perfusion culture was switched to a growth suppressed mode. In one example, the qp increased from 30 pg/cell/day to as high as 115 pg/cell/day when the cell growth was arrested. This led to increased daily volumetric productivities of 3 to 5 g/L/day compared to the control of 1 g/L/day. Cell cycle analysis of the arrested culture by flow cytometry also revealed an induced state of elevated cell population in the G0/G1 phase, which is generally considered as the most productive state of the cell cycle. In order to integrate the cell growth control strategy described herein, a two stage perfusion concept is designed where the first stage focuses on rapid accumulation of cells to reach the target cell density, and the second stage switches to a slow growth, yet highly productive and viable perfusion culture

    The NMDA receptor GluN2C subunit controls cortical excitatoryinhibitory balance, neuronal oscillations and cognitive function

    Get PDF
    Despite strong evidence for NMDA receptor (NMDAR) hypofunction as an underlying factor for cognitive disorders, the precise roles of various NMDAR subtypes remains unknown. The GluN2Ccontaining NMDARs exhibit unique biophysical properties and expression pattern, and lower expression of GluN2C subunit has been reported in postmortem brains from schizophrenia patients. We found that loss of GluN2C subunit leads to a shift in cortical excitatory-inhibitory balance towards greater inhibition. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) of GluN2C knockout mice have reduced mEPSC frequency and dendritic spine density and a contrasting higher frequency of mIPSCs. In addition a greater number of perisomatic GAD67 puncta was observed suggesting a potential increase in parvalbumin interneuron inputs. At a network level the GluN2C knockout mice were found to have a more robust increase in power of oscillations in response to NMDAR blocker MK- 801. Furthermore, GluN2C heterozygous and knockout mice exhibited abnormalities in cognition and sensorimotor gating. Our results demonstrate that loss of GluN2C subunit leads to cortical excitatoryinhibitory imbalance and abnormal neuronal oscillations associated with neurodevelopmental disorders

    Genome scale model reconstruction of the methylotrophic yeast Ogataea polymorpha

    Get PDF
    Ogataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications. It is a promising host to generate platform chemicals from methanol, derived e.g. from carbon capture and utilization streams. Full development of the organism into a production strain requires additional strain design, supported by metabolic modeling on the basis of a genome-scale metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha. To overcome this limitation, we used a published reconstruction of the closely related yeast Pichia pastoris as reference and corrected reactions based on KEGG annotations. Additionally, we conducted phenotype microarray experiments to test O. polymorpha’s metabolic capabilities to grown on or respire 192 different carbon sources. Over three-quarter of the substrate usage was correctly reproduced by the model. However, O. polymorpha failed to metabolize eight substrates and gained 38 new substrates compared to the P. pastoris reference model. To enable the usage of these compounds, metabolic pathways were inferred from literature and database searches and potential enzymes and genes assigned by conducting BLAST searches. To facilitate strain engineering and identify beneficial mutants, gene-protein-reaction relationships need to be included in the model. Again, we used the P. pastoris model as reference to extend the O. polymorpha model with this relevant information. The final metabolic model of O. polymorpha supports the engineering of synthetic metabolic capabilities and enabling the optimization of production processes, thereby supporting a sustainable future methanol econom

    Antimicrobial resistance in patients with suspected urinary tract infections in primary care in Assam, India

    Get PDF
    OBJECTIVES: We investigated the prevalence and diversity of antimicrobial resistance in bacteria isolated from urine samples of community-onset urinary tract infection (UTI) patients in southern Assam, India. METHODS: Freshly voided midstream urine samples were collected from patients attending primary healthcare centres, with the patients’ epidemiological data also recorded. Species identification was confirmed using a VITEK 2 compact automated system. Phenotypic confirmation of ESBLs was performed using the combined disc diffusion method (CLSI 2017) and carbapenemase production was phenotypically characterized using a modified Hodge test. Common ESBLs and carbapenem-resistance mechanisms were determined in Escherichia coli isolates using PCR assays. Incompatibility typing of the conjugable plasmids was determined by PCR-based replicon typing; the phylotypes and MLSTs were also analysed. RESULTS: A total of 301 (59.7%) samples showed significant bacteriuria along with symptoms of UTI and among them 103 isolates were identified as E. coli of multiple STs (ST3268, ST3430, ST4671 and others). Among them, 26.2% (27/103) were phenotypically ESBL producers whereas 12.6% (13/103) were carbapenemase producers. This study describes the occurrence of diverse ESBL genes—bla(CTX-M-15), bla(SHV-148), bla(PER-1) and bla(TEM)—and two E. coli isolates carrying the bla(NDM-1) carbapenemase gene. ESBL genes were located within transconjugable plasmids of IncP and IncF type whereas bla(NDM-1) was carried in an IncF(repB) type plasmid. CONCLUSIONS: This study illustrates the high rate of MDR in E. coli causing UTI in primary care in rural Assam. UTIs caused by ESBL- or MBL-producing bacteria are very difficult to treat and can often lead to treatment failure. Thus, future research should focus on rapid diagnostics to enable targeted treatment options and reduce the treatment failure likely to occur with commonly prescribed antibiotics, which will help to combat antimicrobial resistance and the burden of UTIs

    Genome-scale modeling of yeast: chronology, applications and critical perspectives

    Get PDF
    Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the main challenges and future perspectives for the field are finally addressedThis work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of a Ph.D. grant (PD/BD/52336/2013), of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01–0145FEDER-006684) and also in the context of the EU-funded initiative ERA-NET for Industrial Biotechnology (ERA-IB-2/0003/2013), in addition to the BioTecNorte operation (NORTE-01–0145FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
    corecore