32 research outputs found

    Neurocalcin δ Modulation of ROS-GC1, a New Model of Ca2+ Signaling†

    Get PDF
    ROS-GC1 membrane guanylate cyclase is a Ca(2+) bimodal signal transduction switch. It is turned off by a rise in free Ca(2+) from nanomolar to the semicromolar range in the photoreceptor outer segments and the olfactory bulb neurons; by a similar rise in the bipolar and ganglion retinal neurons it is turned on . These opposite operational modes of the switch are specified by its Ca(2+) sensing devices, respectively termed GCAPs and CD-GCAPs. Neurocalcin delta is a CD-GCAP. In the present study, the neurocalcin delta-modulated site, V(837)-L(858), in ROS-GC1 has been mapped. The location and properties of this site are unique. It resides within the core domain of the catalytic module and does not require the alpha-helical dimerization domain structural element (amino acids 767-811) for activating the catalytic module. Contrary to the current beliefs, the catalytic module is intrinsically active; it is directly regulated by the neurocalcin delta-modulated Ca(2+) signal and is dimeric in nature. A fold recognition based model of the catalytic domain of ROS-GC1 was built, and neurocalcin delta docking simulations were carried out to define the three-dimensional features of the interacting domains of the two molecules. These findings define a new transduction model for the Ca(2+) signaling of ROS-GC1

    Ca2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain

    Get PDF
    Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery

    Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate

    Get PDF
    Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC’s CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase’s catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the physiological activity of other members of MGC family

    Associations of CDH1 germline variant location and cancer phenotype in families with hereditary diffuse gastric cancer (HDGC)

    Get PDF
    INTRODUCTION: Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome associated with variants in E-cadherin (CDH1), diffuse gastric cancer and lobular breast cancer. There is considerable heterogeneity in its clinical manifestations. This study aimed to determine associations between CDH1 germline variant status and clinical phenotypes of HDGC. METHODS: One hundred and fifty-two HDGC families, including six previously unreported families, were identified. CDH1 gene-specific guidelines released by the Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel were applied for pathogenicity classification of truncating, missense and splice site CDH1 germline variants. We evaluated ORs between location of truncating variants of CDH1 and incidence of colorectal cancer, breast cancer and cancer at young age (gastric cancer at \u3c40 or breast cancer \u3c50 years of age). RESULTS: Frequency of truncating germline CDH1 variants varied across functional domains of the E-cadherin receptor gene and was highest in linker (0.05785 counts/base pair; p=0.0111) and PRE regions (0.10000; p=0.0059). Families with truncating CDH1 germline variants located in the PRE-PRO region were six times more likely to have family members affected by colorectal cancer (OR 6.20, 95% CI 1.79 to 21.48; p=0.004) compared with germline variants in other regions. Variants in the intracellular E-cadherin region were protective for cancer at young age (OR 0.2, 95% CI 0.06 to 0.64; p=0.0071) and in the linker regions for breast cancer (OR 0.35, 95% CI 0.12 to 0.99; p=0.0493). Different CDH1 genotypes were associated with different intracellular signalling activation levels including different p-ERK, p-mTOR and β-catenin levels in early submucosal T1a lesions of HDGC families with different CDH1 variants. CONCLUSION: Type and location of CDH1 germline variants may help to identify families at increased risk for concomitant cancers that might benefit from individualised surveillance and intervention strategies

    Rank dependence of orientational relaxation in dipolar systems

    No full text
    An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories

    Molecular Dynamics Simulations of Orientational Relaxation in Dipolar Lattice: Lack of Diffusive Decay for Second and Higher Rank Correlation Functions

    No full text
    Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t)

    Natural polyphenols as sirtuin 6 modulators

    Get PDF
    Abstract Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungus with various pharmacological effects. Due to their plethora of biological activities, they have been studied extensively in drug development. They have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Because SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer. Here we show, that flavonoids can alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 µM concentration. The most potent SIRT6 activator, cyanidin, belonged to anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the 3–10 fold increase for the others. Cyanidin also significantly increased SIRT6 expression in Caco-2 cells. Results from the docking studies indicated possible binding sites for the inhibitors and activators. Inhibitors likely bind in a manner that could disturb NAD+ binding. The putative activator binding site was found next to a loop near the acetylated peptide substrate binding site. In some cases, the activators changed the conformation of this loop suggesting that it may play a role in SIRT6 activation
    corecore