11 research outputs found

    The Role of PAF1/PD2 in Inducing Drug Resistance In Pancreatic Cancer Cells

    Get PDF
    Pancreatic cancer is a highly aggressive human cancer and the third leading cause of death due to cancer. Cancer stems cells (CSC) are a small population of cancer cells that mediate tumorigenesis, metastasis, and resistance to standard treatments. By specifically identifying and targeting CSC maintenance genes, the efficiency of treatment modalities can be improved. PAF1 (RNA Polymerase II-Associated Factor 1), also known as PD2 (Pancreatic Differentiation 2) maintains pluripotency of stem cells and is a marker of pancreatic cancer stem cells. It is upregulated in poorly differentiated pancreatic cancer cells. Gemcitabine is a novel deoxycytidine analogue which has been developed as an anticancer therapy. It is widely used as a chemotherapeutic agent and is presently the most effective agent against pancreatic cancer. Our project aimed at understanding the role of PAF1/PD2 in the maintenance of pancreatic cancer stem cells and its contribution to gemcitabine resistance. Immunohistochemistry and Bioinformatics analysis showed increased PAF1 expression in PDAC tumor samples. Through various experimental methods, it was shown that gemcitabine increases the expression of PAF1/PD2 and CSC markers and that the loss of PAF1/PD2 influences the maintenance of PC cells and sensitizes the cells to gemcitabine. The impact of PAF1/PD2 on gemcitabine resistance and CSC marker expression and on human pancreatic tumor samples was also studied. It was concluded that PAF1/PD2 are overexpressed in pancreatic tumor cells, increased expression of PAF1/PD2 is associated with gemcitabine resistance in pancreatic cancer cells, the knockdown of PAF1/PD2 leads to a significant reduction in expression of CSC markers and pancreatic tumorigenesis, and human pancreatic tumor samples showed increased expression of PAF1/PD2. Additionally, altered expression of PAF1/PD2 has prognostic relevance to pancreatic cancer patient survival.https://digitalcommons.unmc.edu/surp2021/1020/thumbnail.jp

    The Current Landscape of Antibody-based Therapies in Solid Malignancies

    Get PDF
    Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients

    Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer

    Get PDF
    Brain metastasis (BrM) remains a significant cause of cancer-related mortality in epidermal growth factor receptor 2-positive (ERBB2+) breast cancer (BC) patients. We proposed here that a combination treatment of irreversible tyrosine kinase inhibitor neratinib (NER) and the c-MET inhibitor cabozantinib (CBZ) could prevent brain metastasis. To address this, we first tested the combination treatment of NER and CBZ in the brain-seeking ERBB2+ cell lines SKBrM3 and JIMT-1-BR3, and in ERBB2+ organoids that expressed the c-MET/ERBB1 axis. Next, we developed and characterized an orthotopic mouse model of spontaneous BrM and evaluated the therapeutic effect of CBZ and NER in vivo. The combination treatment of NER and CBZ significantly inhibited proliferation and migration in ERBB2+ cell lines and reduced the organoid growth in vitro. Mechanistically, the combination treatment of NER and CBZ substantially inhibited ERK activation downstream of the c-MET/ERBB1 axis. Orthotopically implanted SKBrM3+ cells formed primary tumor in the mammary fat pad and spontaneously metastasized to the brain and other distant organs. Combination treatment with NER and CBZ inhibited primary tumor growth and predominantly prevented BrM. In conclusion, the orthotopic model of spontaneous BrM is clinically relevant, and the combination therapy of NER and CBZ might be a useful approach to prevent BrM in BC

    Elevated PAF1-RAD52 Axis Confers Chemoresistance to Human Cancers

    Get PDF
    Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers

    ST6GalNAc-I Promotes Lung Cancer Metastasis by Altering MUC5AC Sialylation

    Get PDF
    Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis is poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models- KrasG12D ;Trp53R172H/+ ;Ad-Cre (KPA) and KrasG12D ; Ad-Cre (KA). Survival analysis showed significantly (P=0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of St6galnac-I in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which catalyzes the addition of sialic acid (SA) to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species-specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc-I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53R175H cells exhibited higher affinity towards STn. In addition, ST6GalNAc-I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc-I KO cells injected mice developed less liver metastasis (P=0.01) compared to controls, while co-localization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53R175H mediates ST6GalNAc-I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis

    A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis

    No full text
    Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell–cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. Herein, we provide a comprehensive review of several initiating enzymes involved in the synthesis of O-linked glycosylation that significantly contribute to a number of different cancers

    Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells

    No full text
    Abstract Background Glycosylation plays a critical role in the aggressiveness of pancreatic cancer (PC). Emerging evidences indicate significant involvement of cancer stem cells (CSCs) in PC aggressiveness. However, the importance of glycosylation in pancreatic cancer stem cells (PCSCs) is yet to be addressed. Hence, we evaluated the potential role of glycosylation in maintenance of stemness of PCSCs. Methods Effect of glycosylation specific inhibitors on growth and PCSCs of PC cells was assessed by MTT assay and Side Population (SP) analysis. Isolated PCSCs/SP were characterized using molecular and functional assays. Expression of tumor-associated carbohydrate antigens (TACAs) was analyzed in PCSCs by western blotting. Effect of tunicamycin on PCSCs was analyzed by tumorsphere, clonogenicity, migration assay and immunoblotting for CSCs markers. The differential expression of glycogenes in PCSCs compared to non-CSCs were determined by RT-qPCR, immunoblotting and immunofluorescence. Co-expression of GALNT3 and B3GNT3 with CD44v6 was assessed in progression stages of Kras G12D ; Pdx-1-Cre (KC) and Kras G12D ; p53 R172H ; Pdx-1-Cre (KPC) tumors by immunofluorescence. Transient and CRISPR/Cas9 silencing of GALNT3 and B3GNT3 was performed to examine their effect on CSCs maintenance. Results Inhibition of glycosylation decreased growth and CSCs/SP in PC cells. PCSCs overexpressed CSC markers (CD44v6, ESA, SOX2, SOX9 and ABCG2), exhibited global expressional variation of TACAs and showed higher self-renewal potential. Specifically, N-glycosylation inhibition, significantly decreased tumorsphere formation, migration, and clonogenicity of PCSCs, as well as hypo-glycosylated CD44v6 and ESA. Of note, glycosyltransferases (GFs), GALNT3 and B3GNT3, were significantly overexpressed in PCSCs and co-expressed with CD44v6 at advanced PDAC stages in KC and KPC tumors. Further, GALNT3 and B3GNT3 knockdown led to a decrease in the expression of cell surface markers (CD44v6 and ESA) and self-renewal markers (SOX2 and OCT3/4) in PCSCs. Interestingly, CD44v6 was modified with sialyl Lewis a in PCSCs. Finally, CRISPR/Cas9-mediated GALNT3 KO significantly decreased self-renewal, clonogenicity, and migratory capacity in PCSCs. Conclusions Taken together, for the first time, our study showed the importance of glycosylation in mediating growth, stemness, and maintenance of PCSCs. These results indicate that elevated GALNT3 and B3GNT3 expression in PCSCs regulate stemness through modulating CSC markers

    Chimeric antibody targeting unique epitope on onco-mucin16 reduces tumor burden in pancreatic and lung malignancies

    Get PDF
    Abstract Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis
    corecore