1,217 research outputs found
On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces
For a Banach space X of R^M-valued functions on a Lipschitz domain, let K(X) ⊂ X be a closed convex set arising from pointwise constraints on the value of the function, its gradient or its divergence, respectively. The main result of the paper establishes, under certain conditions, the density of K(X_0) in K(X_1) where X_0 is densely and continuously embedded in X_1. The proof is constructive, utilizes the theory of mollifiers and can be applied to Sobolev spaces such as H (div,Ω) and W1,p(Ω), in particular. It is also shown that such a density result cannot be expected in general.Peer Reviewe
Horizontal rotation signals detected by "G-Pisa" ring laser for the Mw=9.0, March 2011, Japan earthquake
We report the observation of the ground rotation induced by the Mw=9.0, 11th
of March 2011, Japan earthquake. The rotation measurements have been conducted
with a ring laser gyroscope operating in a vertical plane, thus detecting
rotations around the horizontal axis. Comparison of ground rotations with
vertical accelerations from a co-located force-balance accelerometer shows
excellent ring laser coupling at periods longer than 100s. Under the plane wave
assumption, we derive a theoretical relationship between horizontal rotation
and vertical acceleration for Rayleigh waves. Due to the oblique mounting of
the gyroscope with respect to the wave direction-of-arrival, apparent
velocities derived from the acceleration / rotation rate ratio are expected to
be always larger than, or equal to the true wave propagation velocity. This
hypothesis is confirmed through comparison with fundamental-mode, Rayleigh wave
phase velocities predicted for a standard Earth model.Comment: Accepted for publication in Journal of Seismolog
High-Performance Steel Bars and Fibers as Concrete Reinforcement for Seismic-Resistant Frames
Experimental data are presented for six concrete specimens subjected to displacement reversals. Two specimens were reinforced longitudinally with steel bars Grade 410 (60 ksi), two with Grade 670 (97 ksi), and two with Grade 830 (120 ksi). Other experimental variables included axial load (0 or 0.2 fc′ Ag) and volume fraction of hooked steel fibers (0 or 1.5%). All transverse reinforcement was Grade 410, and the nominal concrete compressive strength was 41 MPa (6 ksi). The loading protocol consisted of repeated cycles of increasing lateral displacement reversals (up to 5% drift) followed by a monotonic lateral push to failure. The test data indicate that replacing conventional Grade-410 longitudinal reinforcement with reduced amounts of Grade-670 or Grade-830 steel bars did not cause a decrease in usable deformation capacity nor a decrease in flexural strength. The evidence presented shows that the use of advanced high-strength steel as longitudinal reinforcement in frame members is a viable option for earthquake-resistant construction
Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector
For the HERA upgrade, the ZEUS experiment has designed and installed a high
precision Micro Vertex Detector (MVD) using single sided micro-strip sensors
with capacitive charge division. The sensors have a readout pitch of 120
microns, with five intermediate strips (20 micron strip pitch). An extensive
test program has been carried out at the DESY-II testbeam facility. In this
paper we describe the setup developed to test the ZEUS MVD sensors and the
results obtained on both irradiated and non-irradiated single sided micro-strip
detectors with rectangular and trapezoidal geometries. The performances of the
sensors coupled to the readout electronics (HELIX chip, version 2.2) have been
studied in detail, achieving a good description by a Monte Carlo simulation.
Measurements of the position resolution as a function of the angle of incidence
are presented, focusing in particular on the comparison between standard and
newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM
Influence of Mandrel s Surface on the Mechanical Properties of Joints Produced by Electromagnetic Compression
Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for the manufacturing of lightweight structures. Taking conventional interference fits into account, the contact area s influence on the joint s quality seems to be of significance, as e.g. the contact area and the friction coefficient between the joining partners determine an allowed axial load or torsional momentum proportionally. Therefore, different contact area surfaces were prepared by shot peening and different machining operations and strategies. The mandrel s surfaces were prepared by shot peening with glass beads and Al2O3 particles. Alternatively, preparation was done using simultaneous five axis milling, because potential joining partners in lightweight frame structures within the Transregional Collaborative Research Centre SFB/TR10 would be manufactured similarly. After that, the manufactured surfaces were characterized by measuring the surface roughness and using confocal whitelight microscopy. After joining by electromagnetic compression, the influence of different mandrel s surface conditions on the joint s mechanical properties were analyzed by tensile tests. Finally, conclusions and design rules for the manufacturing of joints by electromagnetic compression are given
First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers
We report the first direct measurement of the overall characteristics of
microwave radio emission from extensive air showers. Using a trigger provided
by the KASCADE-Grande air shower array, the signals of the microwave antennas
of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have
been read out and searched for signatures of radio emission by high-energy air
showers in the GHz frequency range. Microwave signals have been detected for
more than 30 showers with energies above 3*10^16 eV. The observations presented
in this Letter are consistent with a mainly forward-directed and polarised
emission process in the GHz frequency range. The measurements show that
microwave radiation offers a new means of studying air showers at energies
above 10^17 eV.Comment: Accepted for publication in PR
- …