4 research outputs found
Recommended from our members
Mid-ultraviolet Hubble Observations of Europa and the Global Surface Distribution of SO<sub>2</sub>
We present spatially resolved reflectance spectra of Europa’s surface in the wavelength range of 210–315 nm obtained by the Hubble Space Telescope Imaging Spectrograph in 2018 and 2019. These data provide the first high-quality, near-global spectral observations of Europa from 210 to 240 nm. They show that the reflectance of Europa’s leading, trailing, anti-Jovian, and sub-Jovian hemispheres is ∼5% near 210 nm, with varying spectral slopes across the mid-UV. This low albedo, even on the more “pristine” leading hemisphere, indicates a lack of the signature far-UV spectral edge characteristic of water ice. We detected and mapped a strong absorption feature at 280 nm that is consistent with an S–O bond that has previously been attributed to SO2 on the surface, hypothesized to be formed through radiolytic processing of Iogenic sulfur ions that have been preferentially emplaced on Europa’s trailing hemisphere by Jupiter’s magnetic field. Our models show that small inclusions of SO2 (0.1%) within the water ice are sufficient to produce the 280 nm feature without producing a feature at 4.07 μm, which has not been observed in ground-based spectral observations of Europa. This data set is the first to produce a spatially resolved, near-global map of the assumed SO2 feature, which is primarily concentrated near the apex of the trailing hemisphere and correlated with large-scale darker regions in both the visible and the ultraviolet. This distribution is consistent with “cold” exogenic sulfur ion bombardment on Europa
Laboratory studies of radiation effects in water ice in the outer solar system
We present new experimental results on radiolysis of water ice below 140 K induced by 150-eV electrons and 100-keV ions, obtained to understand processes occurring in the outer solar system and interstellar space. The experimental methods discussed are low-energy electron-energy-loss spectroscopy (EELS) and Fourier-transform-infrared (FTIR) spectroscopy. The phenomena studied are the formation and trapping of radiation products, in particular H2O2, and radiation-induced amorphization of crystalline ice.Fil: Baragiola, Raul Antonio. University of Virginia Charlottesville; Estados UnidosFil: Loeffler, Mark. University of Virginia Charlottesville; Estados UnidosFil: Raut, Ujjwal. University of Virginia Charlottesville; Estados UnidosFil: Vidal, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Wilson, Christian. University of Virginia Charlottesville; Estados Unido
Charon’s refractory factory
We combine novel laboratory experiments and exospheric modeling to reveal that “dynamic” Ly-α photolysis of Plutonian methane generates a photolytic refractory distribution on Charon that increases with latitude, consistent with poleward darkening observed in the New Horizons images. The flux ratio of the condensing methane to the interplanetary medium Ly-α photons, φ, controls the distribution and composition of Charon’s photoproducts. Mid-latitude regions are likely to host complex refractories emerging from low-φ photolysis, while high-φ photolysis at the polar zones primarily generate ethane. However, ethane being colorless does not contribute to the reddish polar hue. Solar wind radiolysis of Ly-α–cooked polar frost past spring sunrise may synthesize increasingly complex, redder refractories responsible for the unique albedo on this enigmatic moon
Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives
International audienceThe Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2