78 research outputs found

    The OMPS Limb Profiler Instrument: Two-Dimensional Retrieval Algorithm

    Get PDF
    The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. Measurements are made every 19 seconds along the orbit track, which corresponds to a distance of about 150km. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. All the existing retrieval algorithms rely on a spherical symmetry assumption for the atmosphere structure. While this assumption is reasonable in most of the stratosphere, it is no longer valid in regions of prime scientific interest, such as polar vortex and UTLS regions. The paper will describe a two-dimensional retrieval algorithm whereby the ozone distribution is simultaneously retrieved vertically and horizontally for a whole orbit. The retrieval code relies on (1) a forward 2D Radiative Transfer code (to model limb radiances within a non-uniform atmosphere and evaluate 2D analytical partial derivatives) and (2) an optimal estimator inversion routine. The algorithm uses the typically sparse nature of the kernel matrices as well as fast matrix inversion techniques to allow for fast inversion of limb data with efficient memory management (as was done for MIPAS data processing). While the method has so far only been developed in the context of Single Scatter, the paper will show how the CPU intensive Multiple Scatter modeling can be implemented using parallel CPU processing. Initial results will be presented in terms of retrieved ozone profiles and code performance

    Efficient Three-Dimensional Direct Simulation Monte Carlo for Complex Geometry Problems

    Get PDF
    The simulation of flowfields in the transition flow regime is notoriously difficult with high demands on computer resources (CPU time and storage) and user expertise/labor. This paper describes a new, efficient code which has been developed to simulate high Knudsen number flowfields in three dimensions about bodies of arbitrarily complex geometry. The algorithm has been tested over a wide range of conditions, from free molecular to near-continuum flow regimes, for slender and blunt bodies, for re-entry vehicles and spacecraft. A series of validation tests have been conducted using both wind-tunnel measurements and flight data

    Direct simulation Monte Carlo prediction of on-orbit contaminant deposit levels for HALOE

    Get PDF
    A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flow field and surface conditions and geometric orientations for the satellite in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. A detailed description of the adaptation of this solution method to the study of the satellite's environment is also presented. Results pertaining to the satellite's environment are presented regarding contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface, along with data related to code performance. Using procedures developed in standard contamination analyses, along with many worst-case assumptions, the cumulative upper-limit level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated at about 13,350 A

    Direct Monte Carlo Simulations of Hypersonic Viscous Interactions Including Separation

    Get PDF
    Results of calculations obtained using the direct simulation Monte Carlo method for Mach 25 flow over a control surface are presented. The numerical simulations are for a 35-deg compression ramp at a low-density wind-tunnel test condition. Calculations obtained using both two- and three-dimensional solutions are reviewed, and a qualitative comparison is made with the oil flow pictures highlight separation and three-dimensional flow structure

    Procedure for Adapting Direct Simulation Monte Carlo Meshes

    Get PDF
    A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources

    Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America

    Get PDF
    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the continental United States during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during INTEX-A show that RAQMS captures the main features of the global and continental U.S. distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the continental U.S. export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental U.S. photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24%, with NOx + PAN accounting for 54% of the total NOy export during INTEX-A. Copyright 2007 by the American Geophysical Union

    Real-Time Multi-SLAM System for Agent Localization and 3D Mapping in Dynamic Scenarios

    Get PDF
    International audienceThis paper introduces a Wearable SLAM system that performs indoor and outdoor SLAM in real time. The related project is part of the MALIN challenge which aims at creating a system to track emergency response agents in complex scenarios (such as dark environments, smoked rooms, repetitive patterns, building floor transitions and doorway crossing problems), where GPS technology is insufficient or inoperative. The proposed system fuses different SLAM technologies to compensate the lack of robustness of each, while estimating the pose individually. LiDAR and visual SLAM are fused with an inertial sensor in such a way that the system is able to maintain GPS coordinates that are sent via radio to a ground station, for real-time tracking. More specifically, LiDAR and monocular vision technologies are tested in dynamic scenarios where the main advantages of each have been evaluated and compared. Finally, 3D reconstruction up to three levels of details is performed

    Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A

    Get PDF
    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A

    Observation de pratiques didactiques en LEA

    No full text
    Les formations de Langues Étrangères Appliquées sont désormais majoritaires dans le secteur des langues. Conçues à leur origine comme des combinaisons de versions allégées des enseignements de langues classiques, elles ont des difficultés à évoluer. Au travers de l’observation d’une situation locale et de documents portant sur d’autres situations ou évolutions des formations LEA, ce travail vise d’abord à contribuer à l’identification des freins à l’évolution et, dans un second temps, à proposer quelques directions pour rendre ces formations professionnalisantes plus efficaces.Applied Language Studies have become the most popular form of language studies in France. They were designed in the seventies as a lighter version of the classic foreign language studies, and their evolution has not been easy. Through observation of a local situation and documents regarding other universities or general changes in Applied Language Studies, this paper aims first to help identify obstacles to their evolution and then to propose some guidelines to making these vocational studies more effective

    Âż Enemigos o nuestros ?: el estatuto de catalanes y portugueses en las relaciones de sucesos posteribres a 1640

    No full text
    International audienc
    • …
    corecore