84 research outputs found
Dynamical models for sand ripples beneath surface waves
We introduce order parameter models for describing the dynamics of sand
ripple patterns under oscillatory flow. A crucial ingredient of these models is
the mass transport between adjacent ripples, which we obtain from detailed
numerical simulations for a range of ripple sizes. Using this mass transport
function, our models predict the existence of a stable band of wavenumbers
limited by secondary instabilities. Small ripples coarsen in our models and
this process leads to a sharply selected final wavenumber, in agreement with
experimental observations.Comment: 9 pages. Shortened version of previous submissio
Coastal oceanography and sedimentology in New Zealand, 1967-91.
This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years
Practical sand transport formula for non-breaking waves and currents
Open Access funded by Engineering and Physical Sciences Research Council Under a Creative Commons license Acknowledgements This work is part of the SANTOSS project (‘SANd Transport in OScillatory flows in the Sheet-flow regime’) funded by the UK's EPSRC (GR/T28089/01) and STW in The Netherlands (TCB.6586). JW acknowledges Deltares strategic research funding under project number 1202359.09. Richard Soulsby is gratefully acknowledged for valuable discussions and feedback on the formula during the SANTOSS project.Peer reviewedPostprin
Localized turbulent flows on scouring granular beds
In many applications a sustained, localized turbulent flow scours a cohesionless granular bed to form a pothole. Here we use similarity methods to derive a theoretical formula for the equilibrium depth of the pothole. Whereas the empirical formulas customarily used in applications contain mumerous free exponents, the theoretical formula contains a single one, which we show can be determined via the phenomenological theory of turbulence. Our derivation affords insight into how a state of dynamic equilibrium is attained between a granular bed and a localized turbulent flow.published or submitted for publicationis peer reviewe
- …