28 research outputs found

    Single-cell fluidic force microscopy reveals stress- dependent molecular interactions in yeast mating

    Full text link
    Sexual agglutinins of the budding yeast Saccharomyces cerevisiae are proteins mediating cell aggregation during mating. Complementary agglutinins expressed by cells of opposite mating types ā€œaā€ and ā€œĪ±ā€ bind together to promote agglutination and facilitate fusion of haploid cells. By means of an innovative single-cell manipulation assay combining fluidic force microscopy with force spectroscopy, we unravel the strength of single specific bonds between a- and Ī±-agglutinins (~100 pN) which require pheromone induction. Prolonged cellā€“cell contact strongly increases adhesion between mating cells, likely resulting from an increased expression of agglutinins. In addition, we highlight the critical role of disulfide bonds of the a- agglutinin and of histidine residue H273 of Ī±-agglutinin. Most interestingly, we find that mechanical tension enhances the interaction strength, pointing to a model where physical stress induces conformational changes in the agglutinins, from a weak-binding folded state, to a strong-binding extended state. Our single-cell technology shows promises for under- standing and controlling the complex mechanism of yeast sexuality

    The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence

    No full text
    Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans

    The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence

    No full text
    Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans

    Cellā€“Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy

    No full text
    It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins

    A Biochemical Guide to Yeast Adhesins: Glycoproteins for Social and Antisocial Occasions

    No full text
    Fungi are nonmotile eukaryotes that rely on their adhesins for selective interaction with the environment and with other fungal cells. Glycosylphosphatidylinositol (GPI)-cross-linked adhesins have essential roles in mating, colony morphology, host-pathogen interactions, and biofilm formation. We review the structure and binding properties of cell wall-bound adhesins of ascomycetous yeasts and relate them to their effects on cellular interactions, with particular emphasis on the agglutinins and flocculins of Saccharomyces and the Als proteins of Candida. These glycoproteins share common structural motifs tailored to surface activity and biological function. After being secreted to the outer face of the plasma membrane, they are covalently anchored in the wall through modified GPI anchors, with their binding domains elevated beyond the wall surface on highly glycosylated extended stalks. N-terminal globular domains bind peptide or sugar ligands, with between millimolar and nanomolar affinities. These affinities and the high density of adhesins and ligands at the cell surface determine microscopic and macroscopic characteristics of cell-cell associations. Central domains often include Thr-rich tandemly repeated sequences that are highly glycosylated. These domains potentiate cell-to-cell binding, but the molecular mechanism of such an association is not yet clear. These repeats also mediate recombination between repeats and between genes. The high levels of recombination and epigenetic regulation are sources of variation which enable the population to continually exploit new niches and resources

    The <i>Candida albicans</i> stress response gene Stomatin-Like Protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells

    No full text
    <div><p>The ubiquitous presence of SPFH (<u>S</u>tomatin, <u>P</u>rohibitin, <u>F</u>lotillin, <u>H</u>flK/HflC) proteins in all domains of life suggests that their function would be conserved. However, SPFH functions are diverse with organism-specific attributes. SPFH proteins play critical roles in physiological processes such as mechanosensation and respiration. Here, we characterize the stomatin <i>ORF19</i>.<i>7296/SLP3</i> in the opportunistic human pathogen <i>Candida albicans</i>. Consistent with the localization of stomatin proteins, a Slp3p-Yfp fusion protein formed visible puncta along the plasma membrane. We also visualized Slp3p within the vacuolar lumen. Slp3p primary sequence analyses identified four putative S-palmitoylation sites, which may facilitate membrane localization and are conserved features of stomatins. Plasma membrane insertion sequences are present in mammalian and nematode SPFH proteins, but are absent in Slp3p. Strikingly, Slp3p was present in yeast cells, but was absent in hyphal cells, thus categorizing it as a yeast-phase specific protein. Slp3p membrane fluorescence significantly increased in response to cellular stress caused by plasma membrane, cell wall, oxidative, or osmotic perturbants, implicating <i>SLP3</i> as a general stress-response gene. A <i>slp3Ī”/Ī”</i> homozygous null mutant had no detected phenotype when <i>slp3Ī”/Ī”</i> mutants were grown in the presence of a variety of stress agents. Also, we did not observe a defect in ion accumulation, filamentation, endocytosis, vacuolar structure and function, cell wall structure, or cytoskeletal structure. However, <i>SLP3</i> over-expression triggered apoptotic-like death following prolonged exposure to oxidative stress or when cells were induced to form hyphae. Our findings reveal the cellular localization of Slp3p, and for the first time associate Slp3p function with the oxidative stress response.</p></div

    Structure of <i>C</i>. <i>albicans</i> SPFH proteins.

    No full text
    <p>Schematic representation of Orf19.7296p/Slp3p compared to <i>C</i>. <i>albicans</i> SPFH family members. Images are drawn to scale.</p
    corecore