2 research outputs found

    A cartesian ensemble of feature subspace classifiers for music categorization

    Get PDF
    We present a cartesian ensemble classification system that is based on the principle of late fusion and feature subspaces. These feature subspaces describe different aspects of the same data set. The framework is built on the Weka machine learning toolkit and able to combine arbitrary feature sets and learning schemes. In our scenario, we use it for the ensemble classification of multiple feature sets from the audio and symbolic domains. We present an extensive set of experiments in the context of music genre classification, based on numerous Music IR benchmark datasets, and evaluate a set of combination/voting rules. The results show that the approach is superior to the best choice of a single algorithm on a single feature set. Moreover, it also releases the user from making this choice explicitly.International Society for Music Information Retrieva

    Molecular Dynamics of Ionic Liquids from Fast-Field Cycling NMR and Molecular Dynamics Simulations.

    Get PDF
    Understanding the connection between the molecular structure of ionic liquids and their properties is of paramount importance for practical applications. However, this connection can only be established if a broad range of physicochemical properties on different length and time scales is already available. Even then, the interpretation of the results often remains ambiguous due to the natural limits of experimental approaches. Here we use fast-field cycling (FFC) to access both translational and rotational dynamics of ionic liquids. These combined with a comprehensive physicochemical characterization and MD simulations provide a toolkit to give insight into the mechanisms of molecular mechanics. The FFC results are consistent with the computer simulation and conventional physicochemical approaches. We show that curling of the side chains around the positively charged cationic core is essential for the properties of ether-functionalized ionic liquids, and we demonstrate that neither geometry nor polarity alone are sufficient to explain the macroscopic properties
    corecore