503 research outputs found

    Superconductivity Induced by Bond Breaking in the Triangular Lattice of IrTe2

    Get PDF
    IrTe2, a layered compound with a triangular iridium lattice, exhibits a structural phase transition at approximately 250 K. This transition is characterized by the formation of Ir-Ir bonds along the b-axis. We found that the breaking of Ir-Ir bonds that occurs in Ir1-xPtxTe2 results in the appearance of a structural critical point in the T = 0 limit at xc = 0.035. Although both IrTe2 and PtTe2 are paramagnetic metals, superconductivity at Tc = 3.1 K is induced by the bond breaking in a narrow range of x > xc in Ir1-xPtxTe2. This result indicates that structural fluctuations can be involved in the emergence of superconductivity.Comment: 10 pages, 4 figure

    Palaeomagnetic analyses of calcified deposits from the Plio-Pleistocene hominid site of Kromdraai, South Africa

    Get PDF
    Paleomagnetic data are presented for a set of orientated cores from a talus cone at Kromdraai B, a South African cave deposit associated with early Pleistocene fauna including important hominid remains of Paranthropus Australophitecus) robustus. Polarity interpretations of calcified sediments and flowstones suggest that the cave deposits include episodes of deposition that span the Olduvai Event of the Matuyama chron. Results suggest that matrix of the kind associated with the type specimen of robustus (TM 1517) corresponds closely to the beginning of the Olduvai Event, c. 1.9 Myr ag

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    Document Analysis Research in the Year 2021

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceDespite tremendous advances in computer software and hardware, certain key aspects of experimental research in document analysis, and pattern recognition in general, have not changed much over the past 50 years. This paper describes a vision of the future where community-created and managed resources make possible fundamental changes in the way science is conducted in such fields. We also discuss current developments that are helping to lead us in this direction

    Increased lipophilicity and subsequent cell partitioning decrease passive transcellular diffusion of novel, highly lipophilic antioxidants

    Get PDF
    ABSTRACT Oxidative stress is considered a cause or propagator of acute and chronic disorders of the central nervous system. Novel 2,4-diamino-pyrrolo [2,3-d]pyrimidines are potent inhibitors of iron-dependent lipid peroxidation, are cytoprotective in cell culture models of oxidative injury, and are neuroprotective in brain injury and ischemia models. The selection of lead candidates from this series required that they reach target cells deep within brain tissue in efficacious amounts after oral dosing. A homologous series of 26 highly lipophilic pyrrolopyrimidines was examined using cultured cell monolayers to understand the structure-permeability relationship and to use this information to predict brain penetration and residence time. Pyrrolopyrimidines were shown to be a more permeable structural class of membrane-interactive antioxidants where transepithelial permeability was inversely related to lipophilicity or to cell partitioning. Pyrrole substitutions influence cell partitioning where bulky hydrophobic groups increased partitioning and decreased permeability and smaller hydrophobic groups and more hydrophilic groups, especially those capable of weak hydrogen bonding, decreased partitioning, and increased permeability. Transmonolayer diffusion for these membrane-interactive antioxidants was limited mostly by desorption from the receiver-side membrane into the buffer. Thus, in this case, these in vitro cell monolayer models do not adequately mimic the in vivo situation by underestimating in vivo bioavailability of highly lipophilic compounds unless acceptors, such as serum proteins, are added to the receiving buffer. A series of novel 2,4-diamino-pyrrolo[2,3-d]pyrimidines were described as potent inhibitors of iron-dependent lipid peroxidation, and proved to be cytoprotective in cell culture models of oxidative injury and neuroprotective in brain injury and ischemia models Structural determinants of permeability and partitioning are discussed for a series of structurally similar homologs. In addition, detailed studies were conducted concurrently with two radiolabled compounds from the pyrrolopyrimidine series representing different physicochemical, permeability, and cell partitioning attributes to discern the roles of protein binding and cell partitioning on permeation and to complement ongoing pharmacological and pharmacokinetic studies. The data proved useful in predicting which compounds were most likely to leave the blood and penetrate underlying tissue. In a companion paper, brain uptake dynamics and cellular penetration of these compounds are confirmed in viv

    Tomographic mapping of the hidden dimension in quasi-particle interference

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-05, registration 2021-11-04, accepted 2021-11-04, pub-electronic 2021-11-18, online 2021-11-18, collection 2021-12Publication status: PublishedFunder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266; Grant(s): EP/L015110/1, EP/R031924/1Funder: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); doi: https://doi.org/10.13039/100010661; Grant(s): 730872, ERC-714193-QUESTDO, 730872Abstract: Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle interference is dominated by a quasi-2D electronic structure. Here, we explore QPI imaging of galena, a material with an electronic structure that does not exhibit pronounced anisotropy. We find that the quasiparticle interference signal is dominated by scattering vectors which are parallel to the surface plane however originate from bias-dependent cuts of the 3D electronic structure. We develop a formalism for the theoretical description of the QPI signal and demonstrate how this quasiparticle tomography can be used to obtain information about the 3D electronic structure and orbital character of the bands

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    The role of endogenous and exogenous mechanisms in the formation of R&D networks

    Get PDF
    We develop an agent-based model of strategic link formation in Research and Development (R&D)networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms whichare both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms
    • …
    corecore