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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In "Tomographic mapping of the hidden dimension in quasiparticle interference" by Marques et al., 

the authors present a method for analyzing quasiparticle interference images, which permits 

extraction of information about the bulk electronic structure of galena, a fully three-dimensional--

rather than quasi-two dimensional--material. They develop a method based on T-matrix calculations 

for extracting this information, in order to go beyond past work limited to study of quasi-two 

dimensional systems. Experimental results are supported by density functional theory and tight-

binding theoretical methods to demonstrate the effectiveness of their approach. 

 

The work serves as a useful step in studying truly three dimensional electronic structures, showing 

excellent agreement between experiment and theory. Given the widespread use of quasiparticle 

interference imaging in study of condensed matter systems, this proof-of-concept work addresses an 

important issue in extending this experimental technique to a broader class of materials. I therefore 

think is suitable for publication in Nature Communications. I do ask, however, for the authors to 

clarify how they determined the ratios of p_z and p_{x,y} orbitals used to match to experiment for 

Fig. 3. Was this ratio determined manually and by eye, or was it automated and achieved by a 

quantitative fit? If this was achieved manually, the authors should acknowledge this, comment on 

the shortcomings or why it is good enough, and discuss how to make this more quantitative. If it was 

achieved quantitatively, explicit discussion of this approach should be added, again commenting on 

shortcomings and possible improvements. 

 

 

Reviewer #2 (Remarks to the Author): 

 

In this manuscript, Marques et al. investigated the quasiparticle interference (QPI) images on 

PbS(100) surface through scanning tunneling microscopy. By considering the folded band structures 

in minimal supercell, they found the QPI images at different bias are dominated by the scattering 

vectors in energy-dependent kz-plane. Through T matrix calculations with full 3D electronic structure 

and orbital composition of surface band, the QPI patterns can be theoretically computed and 

accorded with experiments well. Their results suggest the 3D electronic structures have strong 

contribution in the QPI images, which can be used to extract the bulk band structures. This work is 

quite interesting, and the theoretical framework is thought to be convincing. However, before this 

manuscript is published, some revisions are needed. My comments and questions are as follow. 



1. According to their theoretical framework, the QPI images are dominated by the energy-dependent 

kz plane, which can be derived as shown in Fig.4 for Eb=0.85eV for example. The calculated QPI 

patterns at different energies are shown in Fig.3, where however the dominating kz planes for each 

energy were not given. The corresponding kz planes at each energy which are used to calculate the 

QPI patterns in Figure 3 should also be presented in these figures in order for the authors to better 

follow their theoretical framework. 

2. The authors show the scattering vectors connecting the pocket-like constant energy surface (CES) 

in Fig. 4c. Since the QPI patterns come from the energy-dependent kz plane, the CES in different kz 

plane should be quite different from others. I wander how the scattering vectors connect the CES in 

other kz planes. 

3. The authors only show the dispersion of q1 and q3 in Fig. 4d. The scattering vectors q2 and q4 in 

folding BZ are missing. Why? 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

Dear editorial office, dear authors, 

 

I read the MS 'Tomographic mapping of the hidden dimension in quasi-particle interference' by 

Marques, Wahl et al. 

 

The presented work is very impressive to me, it's worth to be presented to a broad audience. 

Still, I feel that the material and the discussion need quite some improvements and changes 

following the questions raised below. 

After major revisions, the manuscript might be suitable for publication. 

 

As explained in very detail, the authors have found signatures of the bulk electronic structure on the 

surface of a crystal provided by the scattering at point-like impurities in the surface-near region. The 

density of states at the surface was mapped by differential conductance maps acquired by STM. So, 

long-range periodic changes of the density of states were found which are related to features of a 

perturbed bulk-like electronic structure which was derived by a Green's function technique. This 

relation of experimental and theoretical results is not very convincing since it is not clear how the 



modified bulk electronic structure reflects the surface electronic structure, since the surface 

electronic structure was not considered explicitely. 

By showing a schematic sketch of the expected local signatures of the bulk electronic structure 

caused by the scattering at single defects, the authors promise similar results as discussed in ref. [6]. 

The MS would gain much, if the authors could provide evidence for single-scattering events at single 

local defects and at the same time for interference patterns caused by the scattering at different 

defects. The single scattering events should be seen in the real space STM conductance map around 

the defect positions, whereas the interference patterns are visible in k-space by Fourier 

transformation as shown. 

 

As the authors discussed the bulk electronic structure with respect to flat areas on the isoenergetic 

surfaces, it becomes obvious, that at certain energies, electrons are focussed in certain directions. 

 

In the discussion of the electronic structure of the fcc material in contrast to the tetragonal 

symmetry superimposed by the (001) surface many inconsistencies about the lattice parameters and 

the lattice directions deserve careful checking. The directions (001), (010) etc have to be defined 

with respect to either the cubic or the tetragonal cell. 

 

In figure 1, the STM topography is not clear to me, if it was measured in constant height or constant 

current mode. The square lattice expected at the (001) surface is not accessible. There are no scales 

for x, y, and z direction given. The z-position of the defects in the sketch is not clear. In panel c, the 

energy for the constant energy surface should be given explicitly. In panel e and f, the directions x 

and y are not clear. 

 

In figure 2, give the band structure e(k) also on the line Gamma-L, which is important for the 

understanding of the elongated shape of the electron lenses around the L point. Give more details 

on the calculation of the ARPES result. Which features from panel a are reflected in the theoretical 

ARPES result? What is the z scale in panels e and f? 

How were the V-set and I-set values chosen for the different bias panels in fig. 2b)? The set point for 

the conductance maps in panels 2e and 2f should be given. 

 

In figure 3, the surface periodicity in [-pi/a_tet, +pi/a_tet] should be reflected in the rho(q) plot. Give 

details on the considered area of the Fourier transforms shown in panels a-h. 

It should be clearly stated that the QPI pattern are in k-space. What is the lattice parameter here, 

cubic or tetragonal cell? What is the reason to choose a limit of 2*pi/a? The ratio p_z/p_xy is not 

clear, the determination/optimization is not explained. Since the orbital character of a pure p-orbital 



tight binding model is strongly connected to the x, y, z component of the k vector, this ratio gives the 

direction of the k vector, but not necessarily the direction of the wave packet propagation. The 

change of the p_z/p_xy ratio with energy is not convincing, even not by including the scattering at 

the cationic defects. Is there experimental evidence for the dominance of cationic defects? 

 

The Green's functions in eq. 1 and 2 need check of signs and indeces, I guess. The 2-dimensional 

character of the considered q vector and the connection to the 3-dimensional k space should be 

explained. To my impression, both equations 1 and 2 are more appropriate for the Supplement, 

since the general audience can not judge these equations. The reason for choosing a certain V(E) as 

a perturbation of the Green's function should be given. 

 

In figure 4a, the directions of the slices are not clear. The differences in panel b between unfolded 

and folded isoenergy surfaces are not expected. To my experience, a pure folding by lowering 

symmetry does not change the electronic eigenstates at all, just the positions in k space are shifted. 

The definitions of the areas and the flatness should be given, and the connection to the in-plane 

propagation. How is the second direction for the determination of the isoenergy flatness treated? 

The red line at about 1.1 pi/c is outside of the considered tetragonal Brillouin zone. The energy E for 

panel b should be given. The minimum of the area at the Brillouin zone boundary is questionable. 

The values for k_z large than pi/c are redundant. 

The q vectors defined in panel c deserve some more consideration. To my opinion, vectors q_1 and 

q_2 describe the same periodicity, considering the lattice periodicity of a_tet. Vector q_4 does not 

connect states of opposite travelling directions, so no interference is expected by scattering at 

different defects. The flatness of the connected areas has to given more attention, since the flatness 

determines the strength of the wave packet and the intensity of the interference wave pattern. The 

energy for panel c should be given. In panel d, the energy gap located at the fcc L point is given at 

the tetragonal Z point, this is unexpected. Where is the vector q_3' located? 

 

On page 15, the definition of the logarithmic derivative needs some more consideration. V(V) is not 

obvious. 

 

The choice of the scattering potential is not given. which type(s) of defects and which defect 

distribution were considered? Which energy dependence of V_0(E) was choosen? 

How is the vacuum decay at 5 Angstroms treated by a bulk like perturbed Green's function? 

The V_0(E) and rho_xy/rho_z(E) are fitting parameters to obtain the surface density of states and 

the pseudo bulk electronic structure by G(q,E). This should be explained. 

 



In figure S2, x, y, and z scales should be given. Are the I panels constant height images? Why is the 4-

fold symmetry not obvious in the Fourier transforms? 

 

The energy for figure S3 should be given. 

 

In figure S4, give the energy for the plots. Where are the q_2 and q_4 vectors located? 

 

Best, 

Peter Zahn 



We	thank	all	the	referees	for	their	time	in	reviewing	our	manuscript	and	
for	their	constructive	criticism.	All	referees	suggest	that	our	work	should	
be	published	after	revision.	We	have	carefully	considered	the	points	raised	
by	the	reviewers	and	have	revised	our	manuscript	accordingly.	We	are	
confident	that	the	modifications	and	our	reply	address	all	the	points	
raised	by	the	reviewers.	We	have	copied	below	the	reviewer	reports	with	
our	replies	indented,	italic	and	in	blue.	Reference	numbers,	where	
provided,	refer	to	the	reference	list	in	the	revised	manuscript.	

	
Reviewer	#1	(Remarks	to	the	Author):	
	
In	"Tomographic	mapping	of	the	hidden	dimension	in	quasiparticle	
interference"	by	Marques	et	al.,	the	authors	present	a	method	for	analyzing	
quasiparticle	interference	images,	which	permits	extraction	of	information	
about	the	bulk	electronic	structure	of	galena,	a	fully	three-dimensional--rather	
than	quasi-two	dimensional--material.	They	develop	a	method	based	on	T-
matrix	calculations	for	extracting	this	information,	in	order	to	go	beyond	past	
work	limited	to	study	of	quasi-two	dimensional	systems.	Experimental	results	
are	supported	by	density	functional	theory	and	tight-binding	theoretical	
methods	to	demonstrate	the	effectiveness	of	their	approach.	
	
The	work	serves	as	a	useful	step	in	studying	truly	three	dimensional	
electronic	structures,	showing	excellent	agreement	between	experiment	and	
theory.	Given	the	widespread	use	of	quasiparticle	interference	imaging	in	
study	of	condensed	matter	systems,	this	proof-of-concept	work	addresses	an	
important	issue	in	extending	this	experimental	technique	to	a	broader	class	of	
materials.	I	therefore	think	is	suitable	for	publication	in	Nature	
Communications.	I	do	ask,	however,	for	the	authors	to	clarify	how	they	
determined	the	ratios	of	p_z	and	p_{x,y}	orbitals	used	to	match	to	experiment	
for	Fig.	3.	Was	this	ratio	determined	manually	and	by	eye,	or	was	it	automated	
and	achieved	by	a	quantitative	fit?	If	this	was	achieved	manually,	the	authors	
should	acknowledge	this,	comment	on	the	shortcomings	or	why	it	is	good	
enough,	and	discuss	how	to	make	this	more	quantitative.	If	it	was	achieved	
quantitatively,	explicit	discussion	of	this	approach	should	be	added,	again	
commenting	on	shortcomings	and	possible	improvements.	
	

The	pz/pxy	ratios	shown	in	Figure	3	were	found	manually.	There	is	no	
particular	shortcoming	in	this	procedure	other	than	usual	trial-and-error	
adjustments	that	fortunately	can	be	done	rather	quickly	using	our	
method.	We	now	clarify	this	point	in	the	text	(pg.	8,	paragraph	after	eq.	
2).	

	
	
Reviewer	#2	(Remarks	to	the	Author):	



	
In	this	manuscript,	Marques	et	al.	investigated	the	quasiparticle	interference	
(QPI)	images	on	PbS(100)	surface	through	scanning	tunneling	microscopy.	By	
considering	the	folded	band	structures	in	minimal	supercell,	they	found	the	
QPI	images	at	different	bias	are	dominated	by	the	scattering	vectors	in	
energy-dependent	kz-plane.	Through	T	matrix	calculations	with	full	3D	
electronic	structure	and	orbital	composition	of	surface	band,	the	QPI	patterns	
can	be	theoretically	computed	and	accorded	with	experiments	well.	Their	
results	suggest	the	3D	electronic	structures	have	strong	contribution	in	the	
QPI	images,	which	can	be	used	to	extract	the	bulk	band	structures.	This	work	
is	quite	interesting,	and	the	theoretical	framework	is	thought	to	be	convincing.	
However,	before	this	manuscript	is	published,	some	revisions	are	needed.	My	
comments	and	questions	are	as	follow.	
1.	According	to	their	theoretical	framework,	the	QPI	images	are	dominated	by	
the	energy-dependent	kz	plane,	which	can	be	derived	as	shown	in	Fig.4	for	
Eb=0.85eV	for	example.	The	calculated	QPI	patterns	at	different	energies	are	
shown	in	Fig.3,	where	however	the	dominating	kz	planes	for	each	energy	
were	not	given.	The	corresponding	kz	planes	at	each	energy	which	are	used	to	
calculate	the	QPI	patterns	in	Figure	3	should	also	be	presented	in	these	figures	
in	order	for	the	authors	to	better	follow	their	theoretical	framework.	
	

The	calculated	QPI	patterns	in	Figure	3	are	obtained	by	integrating	over	
all	kz	planes.	To	clarify	this,	we	have	added	a	short	description	in	the	
revised	manuscript	on	page	8	(immediately	after	eq.	2).	We	later	discuss	
the	dominant	kz	planes	to	provide	an	intuitive	explanation	of	the	origin	of	
the	main	scattering	vectors.	

	
2.	The	authors	show	the	scattering	vectors	connecting	the	pocket-like	
constant	energy	surface	(CES)	in	Fig.	4c.	Since	the	QPI	patterns	come	from	the	
energy-dependent	kz	plane,	the	CES	in	different	kz	plane	should	be	quite	
different	from	others.	I	wander	how	the	scattering	vectors	connect	the	CES	in	
other	kz	planes.	
	

We	refer	the	referee	to	figure	4a,	which	shows	how	the	scattering	vector	
changes	for	different	kz	planes	and	at	different	energies.	As	we	show,	only	
some	kz	planes	contribute	significantly.	We	have	added	a	figure	below	to	
highlight	this	point,	see	fig.	R1.	
	



 
Figure R1: Sketch of cuts parallel to ky for constant energy surfaces based on the tight-binding model 
from Lent et al. [Superlattices and Microstructures 2, 491-499 (1986)]. The spatial directions are in 
relation to the minimal Brillouin zone, represented by the grey rectangle. The dotted grey lines show 
the limits of the FCC Brillouin zone and the high symmetry points are indicated for comparison. We 
indicate dominant scattering vectors for a defect in the top surface layer. The red arrow indicates the 
dominant scattering vector and kz plane seen in QPI. Once the pockets at the L-points connect and 
cross the kz=0 plane, there are two dominant scattering planes, kz=0 (blue arrow) and the scattering 
plane indicated by the red arrow.	
3.	The	authors	only	show	the	dispersion	of	q1	and	q3	in	Fig.	4d.	The	scattering	
vectors	q2	and	q4	in	folding	BZ	are	missing.	Why?	
	

For	the	sake	of	clarity	we	have	removed	these	two	vectors	in	the	revised	
manuscript,	they	are	indeed	hard	to	discern.	Accordingly,	we	changed	the	
label	of	q3	to	q2	in	Figure	4	of	the	main	manuscript	and	Figure	S5	in	the	
supplementary.	

	
Reviewer	#3	(Remarks	to	the	Author):	
	
Dear	editorial	office,	dear	authors,	
	
I	read	the	MS	'Tomographic	mapping	of	the	hidden	dimension	in	quasi-
particle	interference'	by	Marques,	Wahl	et	al.	
	
The	presented	work	is	very	impressive	to	me,	it's	worth	to	be	presented	to	a	
broad	audience.	
Still,	I	feel	that	the	material	and	the	discussion	need	quite	some	improvements	



and	changes	following	the	questions	raised	below.	
After	major	revisions,	the	manuscript	might	be	suitable	for	publication.	
	
As	explained	in	very	detail,	the	authors	have	found	signatures	of	the	bulk	
electronic	structure	on	the	surface	of	a	crystal	provided	by	the	scattering	at	
point-like	impurities	in	the	surface-near	region.	The	density	of	states	at	the	
surface	was	mapped	by	differential	conductance	maps	acquired	by	STM.	So,	
long-range	periodic	changes	of	the	density	of	states	were	found	which	are	
related	to	features	of	a	perturbed	bulk-like	electronic	structure	which	was	
derived	by	a	Green's	function	technique.	This	relation	of	experimental	and	
theoretical	results	is	not	very	convincing	since	it	is	not	clear	how	the	modified	
bulk	electronic	structure	reflects	the	surface	electronic	structure,	since	the	
surface	electronic	structure	was	not	considered	explicitely.		
	

While	it	is	true	that	the	surface	electronic	structure	is	not	considered	
explicitly,	we	note	that	this	is	justified	by	the	ARPES	results	in	fig.	2c,	
which	show	excellent	agreement	with	the	bulk	electronic	structure.	

	
By	showing	a	schematic	sketch	of	the	expected	local	signatures	of	the	bulk	
electronic	structure	caused	by	the	scattering	at	single	defects,	the	authors	
promise	similar	results	as	discussed	in	ref.	[6].	The	MS	would	gain	much,	if	the	
authors	could	provide	evidence	for	single-scattering	events	at	single	local	
defects	and	at	the	same	time	for	interference	patterns	caused	by	the	scattering	
at	different	defects.	The	single	scattering	events	should	be	seen	in	the	real	
space	STM	conductance	map	around	the	defect	positions,	whereas	the	
interference	patterns	are	visible	in	k-space	by	Fourier	transformation	as	
shown.	
	

Fig.	2e,	f	show	the	real-space	conductance	modulations	around	defects,	
where	the	single	scattering	events	around	defects	can	be	clearly	seen.	We	
note	that	we	cannot	control	the	number	and	position	of	defects	because	
they	arise	from	the	natural	impurities	in	the	mineral	sample.	

	
As	the	authors	discussed	the	bulk	electronic	structure	with	respect	to	flat	
areas	on	the	isoenergetic	surfaces,	it	becomes	obvious,	that	at	certain	
energies,	electrons	are	focussed	in	certain	directions.	
	
In	the	discussion	of	the	electronic	structure	of	the	fcc	material	in	contrast	to	
the	tetragonal	symmetry	superimposed	by	the	(001)	surface	many	
inconsistencies	about	the	lattice	parameters	and	the	lattice	directions	deserve	
careful	checking.	The	directions	(001),	(010)	etc	have	to	be	defined	with	
respect	to	either	the	cubic	or	the	tetragonal	cell.	
	



All	lattice	parameters	are	defined	with	respect	to	the	conventional	unit	
cell	as	shown	in	fig.	1b	on	the	right	(“minimal	cell”).	This	is	the	lattice	
observed	in	the	STM	images	and	differential	conductance	maps.	The	
Bragg	peaks	that	appear	in	the	Fourier	transformation	correspond	to	
2π/a,	where	a	is	the	distance	between	Pb	atoms,	and	is	the	lattice	
constant	both	of	the	bulk	FCC	unit	cell	as	well	as	along	[100]	and	[010]	of	
the	tetragonal	unit	cell.	We	have	added	a	coordinate	cross	in	fig.	1b	for	
clarity,	and	mention	this	now	explicitly	in	the	caption	of	fig.	1.	

	
In	figure	1,	the	STM	topography	is	not	clear	to	me,	if	it	was	measured	in	
constant	height	or	constant	current	mode.		
	

The	topography	was	measured	in	constant	current	mode,	we	have	added	
a	corresponding	comment	in	the	caption.	We	have	added	the	2D	image	
corresponding	to	the	STM	topography	of	Fig.	1	in	the	supplementary,	
together	with	its	Fourier	transform,	in	Fig.	S1	in	the	new	section	S2.	We	
have	also	added	a	description	of	the	imaged	atomic	lattice.	
	

The	square	lattice	expected	at	the	(001)	surface	is	not	accessible.	There	are	no	
scales	for	x,	y,	and	z	direction	given.	The	z-position	of	the	defects	in	the	sketch	
is	not	clear.	In	panel	c,	the	energy	for	the	constant	energy	surface	should	be	
given	explicitly.	In	panel	e	and	f,	the	directions	x	and	y	are	not	clear.		
	

See	above,	the	new	supplementary	fig.	S1	has	a	scale	bar	and	shows	the	
atomic	lattice	in	the	Fourier	transformation.	
Panel	c	is	just	a	schematic	of	a	Fermi	surface	of	a	cubic	system	for	
illustration,	so	we	cannot	provide	an	energy.	We	have	clarified	that	in	the	
caption.	

	
In	figure	2,	give	the	band	structure	e(k)	also	on	the	line	Gamma-L,	which	is	
important	for	the	understanding	of	the	elongated	shape	of	the	electron	lenses	
around	the	L	point.	Give	more	details	on	the	calculation	of	the	ARPES	result.	
Which	features	from	panel	a	are	reflected	in	the	theoretical	ARPES	result?		
	

The	revised	Figure	2	now	includes	the	Γ-L	direction	as	well.	The	ARPES	
measures	the	surface	projection	of	the	bulk	electronic	structure,	over	a	
Lorentzian	distribution	in	kz	around	a	central	value	set	by	the	photon	
energy,	as	described	in	detail	in	the	Supplementary	information.	
Therefore,	multiple	features	of	the	band	structure	in	(a)	contribute	to	the	
experimentally	measured	electronic	structure	by	ARPES,	necessitating	the	
explicit	simulation	of	this	from	the	DFT	calculations,	which	we	show	
besides	the	ARPES	in	Fig.	2c.	

	
What	is	the	z	scale	in	panels	e	and	f?	



	
Panels	e	and	f	are	differential	conductance	(dlnI/dlnV)	maps,	so	do	not	
represent	a	z-scale.	We	have	added	values	to	the	colour	bars	for	clarity.	

 
How	were	the	V-set	and	I-set	values	chosen	for	the	different	bias	panels	in	fig.	
2b)?	The	set	point	for	the	conductance	maps	in	panels	2e	and	2f	should	be	
given.		
	

The	choice	of	the	set	point	parameters,	bias	voltage	V	and	current	I,	for	
the	data	in	Figure	2b	is	explained	in	the	supplementary	in	section	S3	and	
Figure	S2.	We	have	added	a	sentence	about	the	reasoning	behind	the	
choice	of	parameters.	We	have	also	added	the	setpoint	values	for	the	
conductance	maps	in	the	supplementary	material	in	section	S3,	Table	S2.		

	
	
In	figure	3,	the	surface	periodicity	in	[-pi/a_tet,	+pi/a_tet]	should	be	reflected	
in	the	rho(q)	plot.	Give	details	on	the	considered	area	of	the	Fourier	
transforms	shown	in	panels	a-h.	
	

The	surface	periodicity	in	the	rho(q)	plots	does	not	appear	because	they	
are	calculated	using	a	continuum	model,	where	rho(q)	is	not	periodic	in	
the	unit	cell	(see,	e.g.,	Kreisel	et	al.,	PRL	114,	217002;	Choubey,	et	al.,	PRB	
96,	174523).	The	lateral	size	of	the	dI/dV	maps	used	in	Figure	3	were	
included	in	the	supplementary	in	Table	S2	as	Δx.		

	
It	should	be	clearly	stated	that	the	QPI	pattern	are	in	k-space.	What	is	the	
lattice	parameter	here,	cubic	or	tetragonal	cell?	What	is	the	reason	to	choose	a	
limit	of	2*pi/a?		
	

The	reason	to	show	the	QPI	maps	up	to	2pi/a	is	that	this	is	usually	the	
range	in	which	QPI	is	observed.	The	lattice	Green’s	function	is	periodic	in	
2pi/a,	when	considering	the	corresponding	continuum	Green’s	function	
with	realistic	modelling	of	the	overlap	with	the	tip	of	the	STM,	the	QPI	
signal	is	usually	governed	by	contributions	within	the	range	up	to	2pi/a.	A	
practical	reason	for	choosing	a	limit	of	2pi/a	for	the	measurements	(and	
not	something	smaller)	is	that	this	ensures	that	the	atomic	peaks	are	not	
aliased	and	can	be	used	to	correct	for	drift	occurring	over	the	course	of	
the	measurement,	as	discussed	in	the	supplementary	(section	S4).	
The	lattice	parameter	is	the	one	corresponding	to	the	minimal	supercell,	
a,	corresponding	to	the	Pb	square	lattice,	but	we	note	that	it	is	the	same	in	
the	primitive	cell.	

	
The	ratio	p_z/p_xy	is	not	clear,	the	determination/optimization	is	not	
explained.	Since	the	orbital	character	of	a	pure	p-orbital	tight	binding	model	is	



strongly	connected	to	the	x,	y,	z	component	of	the	k	vector,	this	ratio	gives	the	
direction	of	the	k	vector,	but	not	necessarily	the	direction	of	the	wave	packet	
propagation.	The	change	of	the	p_z/p_xy	ratio	with	energy	is	not	convincing,	
even	not	by	including	the	scattering	at	the	cationic	defects.		
	

In	our	tight-binding	model,	the	x,	y	and	z	components	of	the	p	orbitals	
have	been	aligned	with	the	[100],	[010]	and	[001]	lattice	directions	of	the	
minimal	tetragonal	supercell	shown	in	Figure	1,	respectively.	Accordingly,	
the	z	component	is	parallel	to	the	surface	normal	[001],	and	the	other	two	
components	are	parallel	to	the	surface	plane.	Within	this	framework,	we	
have	then	varied	the	pz/pxy	ratio	until	the	resulting	QPI	pattern	shows	
the	best	agreement	with	the	corresponding	experimental	data	at	each	
bias	potential.			

	
Is	there	experimental	evidence	for	the	dominance	of	cationic	defects?	
	

As	discussed	in	the	supplementary	material,	the	sample	is	argentiferous	
galena,	i.e.	silver-rich,	with	silver	and	bismuth	being	the	most	prevalent	
defects	as	confirmed	by	the	elemental	analysis	shown	in	supplementary	
section	S1/table	S1.	Both	are	cationic	defects.		

	
The	Green's	functions	in	eq.	1	and	2	need	check	of	signs	and	indeces,	I	guess.	
The	2-dimensional	character	of	the	considered	q	vector	and	the	connection	to	
the	3-dimensional	k	space	should	be	explained.	To	my	impression,	both	
equations	1	and	2	are	more	appropriate	for	the	Supplement,	since	the	general	
audience	can	not	judge	these	equations.	The	reason	for	choosing	a	certain	
V(E)	as	a	perturbation	of	the	Green's	function	should	be	given.		
 

We	have	fixed	the	sign	in	equation	1	and	indices	in	equation	2.	For	both	k	
and	q	vectors,	we	have	used	the	same	coordinate	system	based	on	the	
lattice	parameters	of	our	minimal	tetragonal	supercell	shown	in	Figure	1.	
Accordingly,	both	kx	and	qx	(ky	and	qy)	are	along	the	conventional	100	
(010)	crystalline	direction	in	PbS,	and	kz	is	parallel	to	001.	We	would	like	
to	keep	these	equations	in	the	main	text,	as	they	are	crucial	to	our	
discussion	of	the	impurity	scattering	and	their	orbital	and	bias	
dependencies.	

	
In	figure	4a,	the	directions	of	the	slices	are	not	clear.	The	differences	in	panel	
b	between	unfolded	and	folded	isoenergy	surfaces	are	not	expected.	To	my	
experience,	a	pure	folding	by	lowering	symmetry	does	not	change	the	
electronic	eigenstates	at	all,	just	the	positions	in	k	space	are	shifted.	 
The	definitions	of	the	areas	and	the	flatness	should	be	given,	and	the	
connection	to	the	in-plane	propagation.	How	is	the	second	direction	for	the	
determination	of	the	isoenergy	flatness	treated?	The	red	line	at	about	1.1	pi/c	



is	outside	of	the	considered	tetragonal	Brillouin	zone.	The	energy	E	for	panel	b	
should	be	given.	The	minimum	of	the	area	at	the	Brillouin	zone	boundary	is	
questionable.	
	

We	agree	that	zone	folding	by	itself	does	not	have	any	impact	on	the	
electronic	structure.	However,	it	can	allow	mapping	out	the	dominant	
bulk	q	vectors	that	contribute	the	most	to	the	observed	QPI	at	the	surface.	
This	mapping	may	not	be	of	much	utility	if	the	given	system	has	a	two-
dimensional	electronic	structure.	For	three-dimensional	systems	like	PbS,	
this	is	entirely	different.	In	such	cases,	all	three	components	of	the	
impurity’s	q	vector,	including	qz,	need	to	be	considered	to	account	for	an	
observed	QPI	pattern.	Unlike	the	qx	and	qy	components,	finding	a	
dominant	qz	component	is	not	an	easy	task.	It	requires	a	precise	mapping	
between	the	electronic	bands	in	the	bulk	Brillouin	zone	and	their	
projections	at	the	surface.	Our	formalism	provides	such	a	mapping.	As	
discussed	in	the	manuscript,	the	zone	folding	associated	with	a	surface	
termination	defines	which	q	vectors	dominate	QPI	intensities	at	a	given	
bias	potential.	They	are	the	q	vectors	whose	qz	components	match	kz-
planes	in	which	the	primitive	Fermi	surface	and	its	folded	image	form	the	
largest	cross-sectional	area.	In	other	words,	for	that	particular	qz,	an	
impurity	can	strongly	scatter	the	wave	vector	k	to	k+q.	So	all	one	needs	to	
do	is	consider	a	properly	folded	bulk	electronic	structure,	search	for	those	
kz	planes	that	exhibit	the	flattest	bands,	and	then	integrate	their	
contributions.	We	have	added	the	energy	for	panel	4b	in	the	caption.	

	
			
The	values	for	k_z	large	than	pi/c	are	redundant.The	q	vectors	defined	in	
panel	c	deserve	some	more	consideration.	To	my	opinion,	vectors	q_1	and	q_2	
describe	the	same	periodicity,	considering	the	lattice	periodicity	of	a_tet.	
Vector	q_4	does	not	connect	states	of	opposite	travelling	directions,	so	no	
interference	is	expected	by	scattering	at	different	defects.	The	flatness	of	the	
connected	areas	has	to	given	more	attention,	since	the	flatness	determines	the	
strength	of	the	wave	packet	and	the	intensity	of	the	interference	wave	pattern.	
The	energy	for	panel	c	should	be	given.	In	panel	d,	the	energy	gap	located	at	
the	fcc	L	point	is	given	at	the	tetragonal	Z	point,	this	is	unexpected.	Where	is	
the	vector	q_3'	located? 
	

Not	only	states	with	opposite	travelling	direction	contribute	to	QPI	(see,	
e.g.,	the	famous	octet	model	for	the	cuprate	superconductors),	however	
we	have	removed	the	vector	as	it	is	difficult	to	see	in	the	calculated	QPI	for	
clarity.	



We	have	added	a	section	in	the	supplementary	(new	section	S7)	and	
Fig.	S7	to	explain	the	distinction	between	q3	and	q’3.		The	difference	
between	these	two	scattering	vectors	arises	due	to	the	change	in	topology	
from	disconnected	pockets	close	to	the	top	(bottom)	of	the	valence	
(conduction)	bands,	where	the	dominant	q-vector	is	q3,	to	connected	
pockets	at	the	energy	M1	(maximum/minimum	in	the	band	structure	
along	Gamma-K	in	the	FCC	Brillouin	zone)	where	q3	becomes	zero	and	is	
replaced	by	q’3.	
	
	

 
On	page	15,	the	definition	of	the	logarithmic	derivative	needs	some	more	
consideration.	V(V)	is	not	obvious.	
	

We	realize	that	the	notation	with	the	whole	equation	on	one	line	was	not	
very	clear.	In	the	revised	version	we	have	typeset	the	equation	on	its	own	
line	(pg.	15),	which	we	are	confident	removes	any	ambiguity.	
	

	
The	choice	of	the	scattering	potential	is	not	given.	which	type(s)	of	defects	and	
which	defect	distribution	were	considered?	Which	energy	dependence	of	
V_0(E)	was	choosen?	
	

As	discussed	in	the	manuscript,	we	have	assumed	the	impurities	are	non-
magnetic	and	randomly	distributed	in	the	whole	system.	Accordingly,	we	
can	describe	them	by	a	spin-	and	momentum-independent	potential	
V=V0I,	where	V0	is	a	constant	and	I	is	a	unity	matrix.		Also,	V0	can	be	fixed	
for	all	calculations	as	it	does	not	affect	the	details	of	the	resulting	QPI	
patterns.	We	have	added	details	of	the	potential	in	the	methods	section,	
near	the	top	of	pg.	16.	
		
In	our	calculations,	we	do	not	choose	the	type	of	defects	directly.	As	
mentioned	above,	we	treat	the	existing	scatters	by	a	mean-field	potential	
which	is	constant	throughout	the	reciprocal	space.	Instead,	by	changing	
the	pz/pxy	ratio	of	conduction	Pb	and	valence	S	bands,	we	find	the	optimal	
configuration	reproducing	the	experimental	QPI	pattern	at	a	given	bias	
potential.	This	enables	us	to	determine	what	types	of	impurity	bound	
states	within	which	energy	window	are	likely	responsible	for	the	observed	
QPI	features.			
		



How	is	the	vacuum	decay	at	5	Angstroms	treated	by	a	bulk	like	perturbed	
Green's	function?		
	

We	use	atomic-like	Wannier	functions	with	well-defined	spatial	
distributions	for	the	Bloch	wave	functions	for	the	projection	onto	a	tight-
binding	model	and	to	determine	the	vacuum	decay.	This	allows	us	to	
perform	a	basis	transformation	from	the	lattice	model	to	the	continuum	
model,	as	described	in	[Choubey,	et	al.,	PRB	96,	174523	(2017);	Kreisel	et	
al.,	PRL	114,	217002],	References	22	and	23	in	the	revised	manuscript.	In	
this	way,	we	can	map	the	bulk	QPI	onto	any	plane	in	the	continuum	space.	
One	possible	choice	is	the	plane	within	which	the	STM	tip	scans	the	
surface.	In	our	calculations,	we	assume	that	it	is	z=5	Å	above	the	topmost	
PbS	atomic	layer	in	the	tetragonal	supercell.		
	

The	V_0(E)	and	rho_xy/rho_z(E)	are	fitting	parameters	to	obtain	the	surface	
density	of	states	and	the	pseudo	bulk	electronic	structure	by	G(q,E).	This	
should	be	explained.	
	

As	explained	earlier,	V0	is	just	a	constant	in	our	calculations.	The	only	
fitting	parameter	in	our	formalism	is	the	pz/pxy	orbital	ratio.	

											
In	figure	S2,	x,	y,	and	z	scales	should	be	given.	Are	the	I	panels	constant	height	
images?	Why	is	the	4-fold	symmetry	not	obvious	in	the	Fourier	transforms?	

[this	referes	to	fig.	S3	of	the	revised	manuscript]	We	have	added	scale	bars	
and	coordinate	axis	to	the	real-space	panels	of	Figure	S3.	The	I	(current)	
panels	are	the	current	images	recorded	simultaneously	with	the	dI/dV	
maps,	which	are	spectroscopic	maps	recorded	with	open	feedback	loop	
while	recording	the	tunnelling	spectrum,	but	closed	feedback	loop	while	
moving	the	tip	to	the	next	point	of	the	image	at	the	setpoint	bias/current	
(see	table	S2).	It	is	these	current	images	which	are	then	used	to	calculate	
dlnI/dlnV.	

	
The	Fourier	transforms	do	not	appear	4-fold	symmetric	due	to	piezo	creep	
and	thermal	drift,	which	are	a	consequence	of	the	dI/dV	maps	being	taken	
over	a	period	of	24	hours	and	at	a	temperature	of	20K.	This	is	responsible	
for	a	noticeable	distortion	in	the	real-space	dI/dV	images,	which	is	
reflected	in	the	Fourier	transform,	where	the	two	sets	of	Bragg	peaks	
appear	to	not	correspond	to	the	same	lattice	constant	and	the	angle	
between	them	is	not	exactly	90	degrees.	To	correct	for	this,	we	perform	
the	process	described	in	section	S4.	
	
	



The	energy	for	figure	S3	should	be	given.	
[fig.	S4	of	the	revised	manuscript]	While	we	think	it	is	irrelevant	for	what	
the	figure	is	trying	to	explain	(namely	how	the	data	processing	affects	
what	is	shown),	we	have	added	the	energy.	

	
In	figure	S4,	give	the	energy	for	the	plots.	Where	are	the	q_2	and	q_4	vectors	
located?		

[this	refers	to	fig.	S5	of	the	revised	manuscript]	We	do	not	understand	this	
comment.	The	graphs	are	as	a	function	of	bias	voltage/energy,	there	is	no	
other	energy.	

	
Best,	
Peter	Zahn	
	
	
List	of	changes:	

• Fig.	1,	Added	crystallographic	directions	and	definition	of	lattice	
parameters	in	fig.	1b	for	the	tetragonal	unit	cell	

• Caption	of	fig.	1:	added	statement	that	the	manuscript	uses	a	notation	
referring	to	the	tetragonal	supercell	throughout,	defined	lattice	
parameters	of	the	unit	cell;	made	clear	that	fig.	1c	is	a	schematic	Brillouin	
zone	

• Pg.	8,	added	reference	to	method	section	for	the	Green’s	function,	further	
added	clarification	below	eq.	2	how	the	QPI	signal	is	calculated.	Added	
sentence	to	clarify	that	orbital	ratio	is	adjusted	manually.	

• Pg.	9:	clarified	reference	to	the	in-plane	directions	[10]	and	[01]	in	the	
discussion	of	fig.	3	

• Fig.	3:	modified	coordinate	cross	in	first	panel	to	only	include	the	in-plane	
direction,	consistent	with	notation	used	in	the	text	

• Fig.	4/caption	of	fig.	4:	changed	error	bars	to	represent	q-space	resolution	
of	the	map	(also	fig.		

• Method	section,	pg.	16,	added	a	sentence	on	how	the	impurity	potential	is	
defined,	as	well	as	details	on	how	the	continuum	QPI	is	calculated	from	
Wannier	functions.	

• Fixed	a	few	typos	throughout	the	text,	and	reference	to	the	supplementary	
material	

• Added	data	and	code	availability	statements	
• Added	references	22,	23	
	

Supplementary:	
• Added	section	S2/fig.	S1	to	explain	the	topography	and	show	the	atomic	

resolution	



• Section	S3,	added	a	statement	on	the	tunnelling	matrix	element	to	
rationalize	the	choice	of	setpoint	conditions.	Added	table	S2	which	lists	
the	setpoint	conditions	used	for	measurements	shown	in	the	main	text.	

• Cation	of	fig.	S4	(former	fig.	S3):	added	bias	voltage	for	the	QPI	data	
shown.	

• Added	section	S7/fig.	S7	to	explain	the	different	between	$q_2$	and	
$q_2^\prime$.	

	
	



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the changes made by the authors and think the manuscript can now be published 

in Nature Communications. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I think the referee comments have been properly addressed and the manuscript is ready for 

publication now. 



Dear editors, dear authors,

This is my 2nd report on the MS 'Tomographic Mapping of the hidden 
dimension in QPI' by Marques at al.

I appreciate that the authors improved and extended the article, as well as 
the SI.
I'm completely convinced that the experimental results are correct and an 
impressive example of bulk electronic structure investigations by having 
access to the surface only.
I feel that the connection of theoretical model and experimental results is 
not explained well enough.
So, I still have some questions and remarks to the authors which should be 
answered before publication.

In the discussion, the perturbed density is considered  or q vectors in the 
plane (qx, qy) only.
The statement on kz summation does not solve this issue.
To my opinion, all q vectors with a fixed qx and qy, differing by the qz 
value, contribute to the visible perturbations of the density at the 
surface. The strength of the influence is determined by the reflection 
properties of the surface potential to the specific (qx, qy, qz) density 
waves. 
This might be covered to a certain extend by the ratio pz/pxy introduced by 
the authors to weight the different orbital contributions. I guess that due 
to the strong coupling of orbital character to the q-vector direction in a 
pure p-orbital tight-binding model, this ratio fixes the angle between q 
vector and surface normal to a certain range.

Concerning fig. 4, I have the following remarks.
The formalism presented allows the mapping of the bulk electronic structure 
to the symmetry imposed by the considered surface facet. 
The visibility of the QPI at the surface is given by the reflection of the 
perturbed bulk states (by the impurity) at the surface potential which 
differs a lot from the bulk potential. These different scattering 
amplitudes might be reflected to a certain extent by the pz/pxy ratios.
The given explanation of the stationary q vectors is not correct in my 
opinion. What you have to look for are parallel constant-energy surface 
areas which might include q-vectors with non-zero z-component. What you 
measure at the surface is (qx, qy) only, but qz is deminished by the 
reflection at the surface. The consideration of the surface as a truncated 
bulk region and expanding the (perturbed) Bloch states in this vacuum 
region seems a quite rough approximation. Please comment on this.
The surface area shown in panel 4b is not correct to my opinion,
1/ from symmetry reasons there should be zero slope at kz=pi/c, as it is in 
the unfolded case,
2/ the folded area should be twice the unfolded one from symmetry reasons. 
I suppose that the nested constant energy pockets around the fcc-L point 
are not treated correctly.
The flatness definition based on the area in (kx, ky)-plane should be given 
explicitely since it is not standard. There should be two types of 
flatnesses defined for (100) and (110) directions. What you have determined 
are stationary q-vectors in the (qx, qy)-plane. I guess there are more with 
stronger nesting properties. In the attached PNG figure I draw some arrows 
indicating positions of nesting q-vectors which connect iso-energy surface 



parts which nest much better then the ridge-like areas you mark for E=-
1.2eV and E=-1.75eV. Your choice might be caused by the used definition of 
flatness. To my opinion, the restriction to (qx, qy, qz=0) vectors is not 
sufficient. To measure a QPI from sub-surface defects a stationary q-vector 
with non-zero qz is mandatory. You find such nesting q-vectors for Eb=-
0.85e, -1.2eV, but not for E=-1.75eV, -2.2eV, see arrows in the attached 
PNG file.
The nesting condition for vector q2 seems to be very weak, q2' seems 
reasonable.

When you consider the perturbed density rho(qx, qy, qz, E), the q vector 
does not describe the impurity, since you consider exactly one impurity 
site with a delta-like perturbation given by the strength of 0.1V. The unit 
Volt seems not correct. Please reconsider the unit of the impurity 
potential strength.

For fig. 4d, please give the complete energy-depenence of the orbital 
contribution ratio pz/pxy which is given for selected energies in fig. 3.
In fig. 4c the vectors q1 and q2 have to be given more clearly.
The panels 4c, S7b, c, and d puzzle me a lot, since the cuts do not fit 
together considering similar energies. 
In figure caption 4f, there is confusion about Vb and Eb.

Concerning table S2 my question is, why you have chosen Iset and Vset as it 
was done. 
It is not obvious why the tip is positioned lower or higher for the 
different voltage ranges measured. 
Why was a positive Vset chosen to measure at negative bias values?
The ranges -0.9 ..-1 and -1.1 .. -1.6V seem to be measured with identical 
parameters. May you can improve the table.

When describing the model formalism, eq. 4 is redundant to eq. 2 in my 
understanding. If I'm wrong, please let me know the reason.

My last question in report one which you did not get, was a bit screwed up- 
sorry. 
The first part pointed to fig. S3 which was answered and changed in the 
figure.
The second one concerned fig. S4 which was solved by dropping vectors q_2 
and q_4 from the discussion.

It is a nice piece of work which needs a bit more polishing.

Best regards,
Peter Zah



We thank Prof Zahn for his time in reviewing our manuscript, his diligent review and for his constructive 
criticism, highlighting that our manuscript represents “a nice piece of work which needs a bit more 
polishing”. We have carefully considered the points raised and revised our manuscript accordingly. We 
are confident that our reply and the modifications of the main text address the points raised by the 
referee. We have copied below the report by Prof Zahn with our replies indented, italic and in blue. 
Reference numbers refer to the reference list in the revised manuscript. 
Our comments are typeset in blue, italic and indented. 
 
Dear editors, dear authors, 
This is my 2nd report on the MS 'Tomographic Mapping of the hidden dimension in QPI' by Marques 
at al. 
I appreciate that the authors improved and extended the article, as well as the SI. 
I'm completely convinced that the experimental results are correct and an impressive example of 
bulk electronic structure investigations by having access to the surface only. 
I feel that the connection of theoretical model and experimental results is not explained well 
enough. So, I still have some questions and remarks to the authors which should be answered before 
publication. 
 
In the discussion, the perturbed density is considered  or q vectors in the plane (qx, qy) only. The 
statement on kz summation does not solve this issue. To my opinion, all q vectors with a fixed qx and 
qy, differing by the qz value, contribute to the visible perturbations of the density at the surface. The 
strength of the influence is determined by the reflection properties of the surface potential to the 
specific (qx, qy, qz) density waves.  
This might be covered to a certain extend by the ratio pz/pxy introduced by the authors to weight 
the different orbital contributions. I guess that due to the strong coupling of orbital character to the 
q-vector direction in a pure p-orbital tight-binding model, this ratio fixes the angle between q vector 
and surface normal to a certain range. 
 

We completely agree with the reviewer that the observed QPI at the surface 𝜌"#𝑞"! , 𝑞""&  results 
from all possible bulk 𝒒 vectors sharing the same #𝑞! , 𝑞"&  components. The additional 𝑞# 
component defines the extent by which the perturbed bulk bands contribute to the joint 
surface density of states. As the reviewer correctly put it, the surface potential, due to its 
symmetry constraints, acts as a reflector selectively picking up the bulk 𝜌#𝑞! , 𝑞"&|$!  at 
different 𝑘# planes and mixing them up to form an observable STM QPI 𝜌"#𝑞"! , 𝑞""&. We 
somehow missed clarifying this in our discussions related to Eq. (1) in the previous revision. To 
avoid any confusion, we have now explicitly stated in the paragraph below the equation (1) on 
page 8 that in our formalism, we first calculate 𝜌#𝑞! , 𝑞"&|$!for all the possible 𝑘# planes in the 
folded Brillouin zone of the bulk PbS and then integrate them to construct the surface QPI 
𝜌"#𝑞"! , 𝑞""&.   
The reviewer is also correct that this effect is partly reflected by the change in the pz/pxy ratio 
at different energies, as the directional polarity of the p orbital is strongly coupled with the 
scattering q vectors. This is also clarified in the same paragraph in revised manuscript. 

 
Concerning fig. 4, I have the following remarks. 
The formalism presented allows the mapping of the bulk electronic structure to the symmetry 
imposed by the considered surface facet.  
The visibility of the QPI at the surface is given by the reflection of the perturbed bulk states (by the 
impurity) at the surface potential which differs a lot from the bulk potential. These different 
scattering amplitudes might be reflected to a certain extent by the pz/pxy ratios. The given 
explanation of the stationary q vectors is not correct in my opinion. What you have to look for are 
parallel constant-energy surface areas which might include q-vectors with non-zero z-component. 



What you measure at the surface is (qx, qy) only, but qz is deminished by the reflection at the 
surface. The consideration of the surface as a truncated bulk region and expanding the (perturbed) 
Bloch states in this vacuum region seems a quite rough approximation. Please comment on this. 
 

As explained above, we do follow the same step as those suggested by the reviewer for 
calculating the surface QPI. We apologise if our previous revision was not clear enough on this 
point. We hope our new corrections remove this confusion. 

 
The surface area shown in panel 4b is not correct to my opinion, 
1/ from symmetry reasons there should be zero slope at kz=pi/c, as it is in the unfolded case, 
2/ the folded area should be twice the unfolded one from symmetry reasons. I suppose that the 
nested constant energy pockets around the fcc-L point are not treated correctly. 
 

(1) The Fermi pocket centred at the L point (%
&
, %
&
, %
&
) has a strong energy dispersion as 

expected from a bulk 3D system. Thus, the only 𝑘-points at which it can have a zero slope 
are the high symmetry 𝑘-points such as L point.  Everywhere else, the band dispersions 
should have a finite slope. To demonstrate this, below, we have shown the electronic band 
structure of PbS along W-L-W in the unfolded BZ, see Figure R1-(a). This direction 
corresponds to [100] axis in the folded zone with 𝑘# = 𝜋/𝑎. As can be seen, both 
conduction and valence bands show a dispersion with a finite slope at 𝑘-points away from 
the L point.  Figure R1-(b) displays this behaviour more clearly. Here, the most noticeable 
feature is the maximum slope achieved at binding energy 𝐸~ − 0.85eV even though 𝑘# =
𝜋/𝑎.  Thus, we can expect that as long as the bias potential is strong enough to cross the 
energy bands away from their extrema, the overall flatness of the resulting energy pockets 
should be finite.  

 
Figure R1. (a) Electronic band dispersions of top valence band (red) and bottom conduction band (green) along W-
L-W direction, corresponding to [100] axis in the folded space with 𝑘" = 𝜋/𝑎. The horizontal dashed line 
corresponds to the binding energy 𝐸# = −0.85 eV. (b) The calculated slope for each band along W-L-W. The open 
and filled black dots denote two possible slopes of the valence band at 𝐸# = −0.85 eV. 

 (2) the total area of the folded and combined energy pockets cannot be twice the area of the 
unfolded one, as there is an overlap between the original Fermi surface and its folded image. 
To demonstrate this, we show in Figure R2, the Fermi surface in the unfolded and folded BZs 
at 𝐸 = −0.85 eV. Comparing Figures R2-(a) and (b), one can notice that the folding has a 
reflection effect, causing an overlap between the original energy pocket (shown in orange) 
with its folded image (shown in black). Focusing only on one of the pockets, we can see that 
there is a significant overlap between the two sections, creating a large common area (See 
Figure R2-(c) and (d)). Accordingly, only the non-overlapping part has a double contribution 
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which after being added to the common area amounts to the total cross-sectional area of the 
Fermi surface in the folded BZ. We have added a statement in the caption of fig. 4 (pg. 11) to 
address this point. 
We realize that the definition of flatness and its discussion may have been confusing. To 

address this, we have modified the definition to state that planes where 7 '(
'$!
8
)*

 is maximized 

dominate the QPI. There are two contributing factors to the QPI intensity: (1) The flatness of 
the original band, as, e.g., expressed by the effective mass – the flatter a band locally, the 
higher its contribution to the QPI signal due to an increased joint density of states. (2) Bands 
with a group velocity parallel to the direction from the tip to the scatterer will contribute more. 

While (1) is directly linked to the cyclotron effective mass is defined as 𝑚∗ = ℏ$

-%
'(
'.

, i.e., it is 
proportional to the first derivative of the cross-sectional area with respect to energy (see, 
"Principles of the theory of solids" by J. M. Ziman, Cambridge University Press (1972)), (2) can 
be linked to extremal orbits in a plane orthogonal to the surface, if one assumes that scattering 
is dominated by surface defects. Extremal orbits, again as is usually done to identify the 
dominant cross sections through the Fermi surface for quantum oscillations, are determined 
by the condition that '(

'$!
= 0, where the z-direction here is normal to the surface. This is 

equivalent to saying that planes contribute where 7 '(
'$!
8
)*

 is maximized. We have changed the 

discussion in the manuscript to this second argument which we think is easier to follow (page 
10), and updated the graph in fig. 4b (just to note, for kz=1 (in units of 𝜋/c0), the slope is not 
well-defined). We note that fig. 4b only provides an intuitive argument to understand why 
certain kz planes dominate the QPI signal, the calculation accounts for all kz planes. 

 
What you have determined are stationary q-vectors in the (qx, qy)-plane. I guess there are more 
with stronger nesting properties. In the attached PNG figure I draw some arrows indicating positions 
of nesting q-vectors which connect iso-energy surface parts which nest much better then the ridge-
like areas you mark for E=1.2eV and E=-1.75eV. Your choice might be caused by the used definition 

Figure R2. The Fermi surface calculated for (a) unfolded BZ and (b) folded BZ at 𝐸# = −0.85 eV. (c) The magnified 
front view of one of the energy pockets (in orange) and its folded image (in black).  (d) The cross-sectional area 
resulting from the 𝑘" cut shown with dashed red line in (c). 



of flatness. To my opinion, the restriction to (qx, qy, qz=0) vectors is not sufficient. To measure a QPI 
from sub-surface defects a stationary q-vector with non-zero qz is mandatory. You find such nesting 
q-vectors for Eb=- 
0.85e, -1.2eV, but not for E=-1.75eV, -2.2eV, see arrows in the attached PNG file. 
The nesting condition for vector q2 seems to be very weak, q2' seems reasonable. 
 

We appreciate the reviewer for raising this important point which complements his first two 
comments. While the reviewer is in principle correct that the nesting vector he draws provides 
a stronger nesting, at the same time this wave vector has a group velocity with a large out-of-
plane component, and thus is only relevant for defects which are comparatively deep in the 
sample. This means that the QPI due to this wave vector, when it reaches the surface, is already 
significantly weaker compared to that of surface defects unless there is a focussing effect as, 
e.g., found for bulk copper (see ref. 6 of our manuscript). In the general case though, the QPI 
will be dominated by surface defects and scattering vectors with a group velocity parallel to 
the surface. These scattering vectors are exactly the ones which dominate in the 𝑘# plane 
identified by our flatness analysis in the folded zone. By symmetry, the dominant scattering 
vectors with in-plane group velocity and non-zero qz (connecting planes with kz¹0 of the cubic 
Brillouin zone) are mapped into the same plane, so are captured by our formalism, see fig. R3.  
So in principle, the scattering vector drawn by Prof Zahn is also accounted for in our 
calculations (see fig. R3): Due to the folding, the nesting vector is mapped into a plane with 
𝑞# = 0.  

 
When you consider the perturbed density rho(qx, qy, qz, E), the q vector does not describe the 
impurity, since you consider exactly one impurity site with a delta-like perturbation given by the 
strength of 0.1V. The unit Volt seems not correct. Please reconsider the unit of the impurity 
potential strength. 
 

We thank the reviewer for pointing out this. As the energy units usually used to analyze 
tunnelling spectra are in eV, and convert 1:1 from the bias voltage, we forgot the “e” for eV 
here. We have corrected that in the revised manuscript (pg. 16). 

 

Figure R3. Comparison of a nesting vector 𝒒 in the unfolded BZ and its counterpart 𝒒′ in the folded BZ. These two 
nesting vectors, even though having different 𝑧 components, can result in the same surface nesting vector 𝒒/ . More 
importantly 𝒒′ is parallel to 𝒒/, indicating that the observed 𝜌(𝒒/) can be reproduced by integrating 𝜌(𝒒)  over parallel 
𝑘"  planes in the folded BZ.  



For fig. 4d, please give the complete energy-depenence of the orbital contribution ratio pz/pxy 
which is given for selected energies in fig. 3. 
 

We have now supplied this in the Supplementary Information, fig. S8/Supplementary Section 
S9.  

 
In fig. 4c the vectors q1 and q2 have to be given more clearly. 
 

We have changed the line thickness and colors of the vector. 
 
The panels 4c, S7b, c, and d puzzle me a lot, since the cuts do not fit together considering similar 
energies.  
 

As mentioned in the caption of fig. S7, the band structure shown there is based on the tight-
binding model of reference 2 in the supplementary material (Lent et al.), so there will be 
differences compared to the band structure shown in fig. 4c, which is based on the DFT 
model used throughout the main text. 
 

In figure caption 4f, there is confusion about Vb and Eb. 
 

Whenever we refer to measured data we provide the voltage at which the measurement was 
done because that is the parameter controlled in the experiment (here Vb). The energy and 
voltage are related by Eb=eVb. Figure 4f refers to a measurement, so the bias voltage Vb=-
0.85V is provided, corresponding to an energy Eb=-0.85eV. 
 

Concerning table S2 my question is, why you have chosen Iset and Vset as it was done.  
It is not obvious why the tip is positioned lower or higher for the different voltage ranges measured.  
 

As we thought we explained in the revised supplementary section S3, the choice of different 
Vset and Iset values has purely technical reasons. Because of the rapid increase of the current 
with increasing voltage, if one tries to use the same Iset and Vset values, either the signal at 
small voltages becomes very small if it is adjusted to capture the QPI at larger voltages or, if 
one optimizes the settings for the signal at small voltages, the current amplifier saturates at 
larger voltages. Therefore, we have used different setpoint voltages and currents to capture 
the QPI signal in different voltage ranges, but have verified that our specific choice does not 
alter the result by checking that tunnelling spectra recorded with different setpoint 
conditions within the range shown remain identical. 
 

Why was a positive Vset chosen to measure at negative bias values? The ranges -0.9 ..-1 and -1.1 .. -
1.6V seem to be measured with identical parameters. May you can improve the table. 
 

We tend to use setpoint parameters with a positive bias voltage. For some materials, it is 
easier to stabilize the tunnelling junction with a certain bias polarity. Here, stabilizing at 
positive bias voltages works better because there is a higher density of states (because the 
material is n-doped). 
 

When describing the model formalism, eq. 4 is redundant to eq. 2 in my understanding. If I'm wrong, 
please let me know the reason. 
 

In the revised manuscript, we have removed Eq. (2) from the main text. 
 



My last question in report one which you did not get, was a bit screwed up- sorry.  
The first part pointed to fig. S3 which was answered and changed in the figure. 
The second one concerned fig. S4 which was solved by dropping vectors q_2 and q_4 from the 
discussion. 
 

No problem, actually we think removing those vectors helped our discussions. 
 
It is a nice piece of work which needs a bit more polishing. 
 

We again thank the reviewer for his valuable comments. We hope with these changes, we 
have been able to address them appropriately, and he now finds our manuscript suitable for 
publication in Nature Communications.   

 
Best regards, 
Peter Zah 



REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

Dear editor, dear authors, 

 

This is my 3rd report on the MS 'Tomographic mapping of the hidden dimension ..' Sorry for the long 

delay to answer your reply. In summary, I agree with the replies from the authors, and recommend 

the MS for publication. 

 

The following three comments should be easily answered by the authors. 

As they pointed out, the theoretical discussion of the QPI is restricted to scattering vectors q parallel 

to the surface, which is supported by strong arguments on the scattering of the density 

perturbations by the defects close to the surface. 

This restriction of the theoretical considerations to q_z=0 has to be stated in the manuscript 

explicitly. The opposite is stated in the updated version below equation 1. 

The discussion on the main contribution to the QPI concerning k_z position and the determination of 

the nesting vectors q_i is a bit weak to my experience. The definition of the flatness as shown in fig. 

4b is connected to the effective cyclotron mass, which might differ from the effective mass 

connected to the group velocity and the density of states. Even more, the nesting condition for q-

vectors is closely linked to the local flatness of the constant-energy surface at the positions 

connected by that q-vector. I don't feel, that this property can be well described by an integral value 

over the cross section of the combined electron pockets. 

The last criticism concerns the usage of the 0.1 V or 0.1 eV as strength of the delta-like scattering 

potential. 

The amplitude of a 3D delta-like scattering potential has to be of unit energy times volume, since the 

integral over the Wigner-Seitz volume of the scattering site is of this unit. It might be that the 

Wigner-Seitz cell volume is assumed here, which seems reasonable. If the authors agree they should 

add a remark in MS or Supplement. 

 

Best, 

Peter Zahn 



We thank the referee for his positive assessment of our manuscript. 

Dear editor, dear authors,  

this is my 3rd report on the MS 'Tomographic mapping of 
the hidden dimension ..' 
Sorry for the long delay to answer your reply.  

In summary, I agree with the replies from the authors, 
and recommend the MS for publication.  

The following three comments should be easily answered by 
the authors.  

As they pointed out, the theoretical discussion of the 
QPI is restricted to scattering vectors q parallel to the 
surface, which is supported by strong arguments on the 
scattering of the density perturbations by the defects 
close to the surface.  

This restriction of the theoretical considerations to 
q_z=0 has to be stated in the manuscript explicitely. The 
opposite is stated in the updated version below equation 
1.  

We have modified the text below eq. 1 to clarify this point, stating that scattering 
patterns are calculated in planes with qz=0 but that vectors with non-zero qz are 
accounted for through the folding. 

The discussion on the main contribution to the QPI 
concerning k_z position and the determination of the 
nesting vectors q_i is a bit weak to my experience. The 
definition of the flatness as shown in fig. 4b is 
connected to the effective cyclotron mass, which might 
differ from the effective mass connected to the group 
velocity and the density of states. Even more, the 
nesting condition for q-vectors is closely linked to the 
local flatness of the constant-energy surface at the 
positions connected by that q-vector. I don't feel, that 
this property can be well described by an integral value 
over the cross section of the combined electron pockets.  

The argument is only required to illustrate the dominant kz plane, but that the 
calculation integrates for all kz values, so does actually account for the details of the 
group velocity and density of states as mentioned by the referee. For a weakly 
correlated system as we consider here, the cyclotron orbit does provide a reasonable 
measure though to determine the dominant kz plane. 



The last criticism concerns the usage of the 0.1 V or 0.1 
eV as strength of the delta-like scattering potential. 
The amplitude of a 3D delta-like scattering potential has 
to be of unit energy times volume, since the integral 
over the Wigner-Seitz volume of the scattering site is of 
this unit. It might be that the Wigner-Seitz cell volume 
is assumed here, which seems reasonable. If the authors 
agree they should add a remark in MS or Supplement.  

The potential is the change in on-site energy of the respective orbital. As such, it is 
normalized over the volume of the orbital wave function, which is usually larger than 
the Wigner-Seitz volume. We have modified the methods section to clarify this point. 

 

Best, Peter Zahn  
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