482 research outputs found

    Superconductivity Induced by Bond Breaking in the Triangular Lattice of IrTe2

    Get PDF
    IrTe2, a layered compound with a triangular iridium lattice, exhibits a structural phase transition at approximately 250 K. This transition is characterized by the formation of Ir-Ir bonds along the b-axis. We found that the breaking of Ir-Ir bonds that occurs in Ir1-xPtxTe2 results in the appearance of a structural critical point in the T = 0 limit at xc = 0.035. Although both IrTe2 and PtTe2 are paramagnetic metals, superconductivity at Tc = 3.1 K is induced by the bond breaking in a narrow range of x > xc in Ir1-xPtxTe2. This result indicates that structural fluctuations can be involved in the emergence of superconductivity.Comment: 10 pages, 4 figure

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Multidrug Resistance-Associated Protein 2 Is Primarily Responsible for the Biliary Excretion of Fexofenadine in Mice

    Get PDF
    Previous studies implicated P-glycoprotein (P-gp) as the major transport protein responsible for the biliary excretion of fexofenadine (FEX). However, FEX biliary excretion was not impaired in P-gp- or Bcrp-knockout mice, and Mrp2-deficient rats. The present study tested the hypothesis that species differences exist in the transport protein primarily responsible for FEX biliary excretion between mice and rats. Livers from Mrp2-knockout (Mrp2KO) mice and Mrp2-deficient (TR−) rats were perfused in a single-pass manner with 0.5 μM FEX. GF120918 (10 μM) was employed to inhibit P-gp and Bcrp. The biliary excretion rate of FEX was decreased 85% in Mrp2KO relative to wild-type mice (18.4 ± 2.2 vs. 122 ± 34 pmol/min/g liver). In mice, more than 50% of FEX unbound intrinsic biliary clearance (CLbile, int = 3.0 ml/hr/g liver) could be attributed to Mrp2 (Mrp2-dependent CLbile, int ~ 1.7 ml/hr/g liver), with P-gp and Bcrp playing a minor role (P-gp- and Bcrp-dependent CLbile, int ~ 0.3 ml/hr/g liver). Approximately one-third of FEX CLbile, int was attributed to unidentified mechanisms in mice. In contrast to mice, FEX biliary excretion rate (245 ± 38 and 250 ± 25 pmol/min/g liver) and CLbile, int (9.72 ± 2.5 and 6.49 ± 0.68 ml/hr/g liver) were comparable between Mrp2-deficient (TR−) and control Wistar rats, respectively, suggesting that unidentified transport mechanism(s) can completely compensate for the loss of Mrp2 function in rats. Mrp2 clearly plays a major role in FEX biliary excretion in mice. In conclusion, remarkable species differences exist in FEX hepatobiliary transport mechanisms

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Predictors and outcomes in primary depression care (POKAL) – a research training group develops an innovative approach to collaborative care

    Get PDF
    BACKGROUND: The interdisciplinary research training group (POKAL) aims to improve care for patients with depression and multimorbidity in primary care. POKAL includes nine projects within the framework of the Chronic Care Model (CCM). In addition, POKAL will train young (mental) health professionals in research competences within primary care settings. POKAL will address specific challenges in diagnosis (reliability of diagnosis, ignoring suicidal risks), in treatment (insufficient patient involvement, highly fragmented care and inappropriate long-time anti-depressive medication) and in implementation of innovations (insufficient guideline adherence, use of irrelevant patient outcomes, ignoring relevant context factors) in primary depression care. METHODS: In 2021 POKAL started with a first group of 16 trainees in general practice (GPs), pharmacy, psychology, public health, informatics, etc. The program is scheduled for at least 6 years, so a second group of trainees starting in 2024 will also have three years of research-time. Experienced principal investigators (PIs) supervise all trainees in their specific projects. All projects refer to the CCM and focus on the diagnostic, therapeutic, and implementation challenges. RESULTS: The first cohort of the POKAL research training group will develop and test new depression-specific diagnostics (hermeneutical strategies, predicting models, screening for suicidal ideation), treatment (primary-care based psycho-education, modulating factors in depression monitoring, strategies of de-prescribing) and implementation in primary care (guideline implementation, use of patient-assessed data, identification of relevant context factors). Based on those results the second cohort of trainees and their PIs will run two major trials to proof innovations in primary care-based a) diagnostics and b) treatment for depression. CONCLUSION: The research and training programme POKAL aims to provide appropriate approaches for depression diagnosis and treatment in primary care

    A Cellular Potts Model simulating cell migration on and in matrix environments

    Get PDF
    Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA

    The Hominin Sites and Paleolakes Drilling Project:Inferring the environmental context of human evolution from eastern African rift lake deposits

    Get PDF
    Funding for the HSPDP has been provided by ICDP, NSF (grants EAR-1123942, BCS-1241859, and EAR-1338553), NERC (grant NE/K014560/1), DFG priority program SPP 1006, DFG-CRC-806 “Our way to Europe”, the University of Cologne (Germany), the Hong Kong Research Grants Council (grant no. HKBU201912), the Peter Buck Fund for Human Origins Research (Smithsonian), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonian’s Human Origins Program.The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.Publisher PDFPeer reviewe

    Directive versus empowering leadership: A field experiment comparing impacts on task proficiency and proactivity

    Get PDF
    Using a field experiment in the United Arab Emirates, we compared the impacts of directive and empowering leadership on customer-rated core task proficiency and proactive behaviors. Results of tests for main effects demonstrated that both directive and empowering leadership increased work unit core task proficiency, but only empowering leadership increased proactive behaviors. Examination of boundary conditions revealed that directive leadership enhanced proactive behaviors for work units that were highly satisfied with their leaders, whereas empowering leadership had stronger effects on both core task proficiency and proactive behaviors for work units that were less satisfied with their leaders. We discuss implications for both theory and practice. © Academy of Management Journal
    corecore