24 research outputs found

    Geology and geochronology of the Tana Basin, Ethiopia : LIP volcanism, super eruptions and Eocene-Oligocene environmental change

    Get PDF
    This work was supported by NERC Grants NE/D012996/1 and NER/B/S/2002/00540 and NIGFSC IP/1024/0508.New geological and geochronological data define four episodes of volcanism for the Lake Tana region in the northern Ethiopian portion of the Afro–Arabian Large Igneous Province (LIP): pre-31 Ma flood basalt that yielded a single 40Ar/39Ar age of 34.05 ± 0.54/0.56 Ma; thick and extensive felsic ignimbrites and rhyolites (minimum volume of 2-3 x 103km3) erupted between 31.108 ± 0.020/0.041 Ma and 30.844 ± 0.027/0.046 Ma (U–Pb CA-ID-TIMS zircon ages); mafic volcanism bracketed by 40Ar/39Ar ages of 28.90 ± 0.12/0.14 Ma and 23.75 ± 0.02/0.04 Ma; and localised scoraceous basalt with an 40Ar/39Ar age of 0.033 ± 0.005/0.005 Ma. The felsic volcanism was the product of super eruptions that created a 60–80 km diameter caldera marked by km-scale caldera-collapse fault blocks and a steep-sided basin filled with a minimum of 180 m of sediment and the present-day Lake Tana. These new data enable mapping, with a finer resolution than previously possible, Afro–Arabian LIP volcanism onto the timeline of the Eocene–Oligocene transition and show that neither the mafic nor silicic volcanism coincides directly with perturbations in the geochemical records that span that transition. Our results reinforce the view that it is not the development of a LIP alone but its rate of effusion that contributes to inducing global-scale environmental change.PostprintPeer reviewe

    An Appalachian Amazon? Magnetofossil evidence for the development of a tropical river-like system in the mid-Atlantic United States during the Paleocene-Eocene thermal maximum

    Get PDF
    On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Geophysical investigation of the Neolithic Calanais landscape

    No full text
    The northern and western isles of Scotland have proved fertile ground for archaeological investigation over the last 100 years. However, the nature of the landscape with its rugged coastlines and irregular topography, together with rapid peat growth rates, make for challenging surveying. Commonly, an archaeological monument or series of monuments is identified but little is known about the surrounding areas and, in particular, the palaeo-landscapes within which the monuments are located. This situation is exemplified by the standing stones of Calanais in Lewis. Here, surrounding peat bogs have buried a significant portion of the landscape around which the stones were first erected. This project identifies remote sensing geophysical techniques that are effective in mapping the buried (lost) landscape and thus aid better contextualisation of the stone monuments within it. Further, the project demonstrates the most appropriate techniques for prospecting across these buried landscapes for as yet unidentified stone features associated with the lives of the people who constructed the monuments

    Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume

    No full text
    Neoproterozoic cap carbonates host distinctive geochemical and sedimentological features that reflect prevailing conditions in the aftermath of Snowball Earth. Interpretation of these features has remained contentious, with hypotheses hinging upon timescale and synchronicity of deposition, and whether or not geochemical signatures of cap carbonates represent those of a well-mixed ocean. Here we present new high-resolution Sr and Mg isotope results from basal Ediacaran cap dolostones in South Australia and Mongolia. Least-altered Sr and Mg isotope compositions of carbonates are identified through a novel incremental leaching technique that monitors the purity of a carbonate sample and the effects of diagenesis. These data can be explained by the formation of these cap dolostones involving two chemically distinct solutions, a glacial meltwater plume enriched in radiogenic Sr, and a saline ocean residue with relatively lower 87Sr/86Sr ratios. Model simulations suggest that these water bodies remained dynamically stratified during part of cap-dolostone deposition, most likely lasting for ∼8 thousand years. Our results can potentially reconcile previous conflicts between timescales estimated from physical mixing models and paleomagnetic constraints. Geochemical data from cap carbonates used to interpret the nature of Snowball Earth and its aftermath should be recast in terms of a chemically distinct meltwater plume

    Neoproterozoic cap-dolostone deposition in stratified glacial meltwater plume

    No full text
    Neoproterozoic cap carbonates host distinctive geochemical and sedimentological features that reflect prevailing conditions in the aftermath of Snowball Earth. Interpretation of these features has remained contentious, with hypotheses hinging upon timescale and synchronicity of deposition, and whether or not geochemical signatures of cap carbonates represent those of a well-mixed ocean. Here we present new high-resolution Sr and Mg isotope results from basal Ediacaran cap dolostones in South Australia and Mongolia. Least-altered Sr and Mg isotope compositions of carbonates are identified through a novel incremental leaching technique that monitors the purity of a carbonate sample and the effects of diagenesis. These data can be explained by the formation of these cap dolostones involving two chemically distinct solutions, a glacial meltwater plume enriched in radiogenic Sr, and a saline ocean residue with relatively lower 87Sr/86Sr ratios. Model simulations suggest that these water bodies remained dynamically stratified during part of cap-dolostone deposition, most likely lasting for ∼8 thousand years. Our results can potentially reconcile previous conflicts between timescales estimated from physical mixing models and paleomagnetic constraints. Geochemical data from cap carbonates used to interpret the nature of Snowball Earth and its aftermath should be recast in terms of a chemically distinct meltwater plume

    Sutton hotspot: Resolving Ediacaran-Cambrian Tectonics and true polar wander for Laurentia

    No full text
    Hotspot tracks represent plate motions relative to mantle sources, and paleomagnetic data from magmatic units along those tracks can quantify motions of those mantle anomalies relative to the Earth's magnetic field and rotational axis. The Ediacaran Period is notable for rapid and large paleomagnetic apparent polar wander (APW) for many continents. Whereas magmatic units attributed to the “Sutton” mantle plume suggest a practically stationary hotspot track, paleolatitudes of Laurentia for that interval vary dramatically; geologic and paleomagnetic data are at odds unless true polar wander (TPW) is invoked to explain a majority of APW. Here we test the plume-TPW hypothesis by generating the predicted Sutton hotspot track for a stationary plume under a moving plate along the Laurentian margin during the interval from 615 to 530 Ma. Our model is the first to provide a kinematic framework for the extensive large igneous province associated with opening the Iapetus Ocean

    Sutton Hotspot:Resolving Ediacaran-Cambrian Tectonics and True Polar Wander for Laurentia

    No full text
    Hotspot tracks represent plate motions relative to mantle sources, and paleomagnetic data from magmatic units along those tracks can quantify motions of those mantle anomalies relative to the Earth's magnetic field and rotational axis. The Ediacaran Period is notable for rapid and large paleomagnetic apparent polar wander (APW) for many continents. Whereas magmatic units attributed to the "Sutton" mantle plume suggest a practically stationary hotspot track, paleolatitudes of Laurentia for that interval vary dramatically; geologic and paleomagnetic data are at odds unless true polar wander (TPW) is invoked to explain a majority of APW. Here we test the plume-TPW hypothesis by generating the predicted Sutton hotspot track for a stationary plume under a moving plate along the Laurentian margin during the interval from 615 to 530 Ma. Our model is the first to provide a kinematic framework for the extensive large igneous province associated with opening the Iapetus Ocean.</p

    Fluid flow, alteration, and timing of Cu-Ag mineralization at the White Pine sediment-hosted copper deposit, Michigan, USA

    No full text
    White Pine, located in Michigan’s Upper Peninsula, is an archetypal sediment-hosted stratiform copper deposit. The Midcontinent rift system is one of only seven basins globally that host a giant sediment-hosted stratiform copper deposit. Despite many similarities with other deposits of this type, White Pine displays some important differences, including the late Mesoproterozoic age, a thick basalt sequence, an apparent lack of evaporites, and a lacustrine depositional setting. This study analyzes paleofluid flow related to the formation of White Pine and places a particular emphasis on structural and diagenetic fluid pathways.Most of the ore is located in a 30-m-wide zone spanning the Copper Harbor Formation red beds and the overlying Nonesuch Formation shales. Sedimentation of these units was accompanied by subtle synsedimentary faulting. Premineralization phases include calcite concretions and nodules, illite and hematite grain coatings, isopachous chlorite rims, emplacement of liquid petroleum (now pyrobitumen), and bleaching. Mineralization introduced native copper into the footwall sandstones and a zoned suite of native copper and sulfur-poor copper sulfide minerals across a migrating redox front in the overlying shales where copper minerals nucleated on authigenic and detrital chlorite grains. Postmineralization phases include quartz cement, calcite cement, and calcite veins that partially overlapped inversion of synsedimentary faults. Contrary to previous studies, we identified evidence for only one phase of mineralization. An Re-Os chalcocite age of 1067 ± 11 Ma places mineralization 11 to 17 m.y. after host-rock deposition. Sulfide δ34S values of –14.0 to 29.9‰ suggest an important contribution from sour gas and thermochemical sulfate reduction of seawater. Carbon (δ13C) and oxygen (δ18O) isotope compositions of five calcite generations range from –15.1 to –1.3‰ and 10.4 to 41.3‰, respectively, and record early meteoric pore water displaced by later seawater.White Pine is both a sediment-hosted stratiform copper deposit and a paleo-oil field. Synsedimentary faults controlled the sedimentological character of the upper Copper Harbor Formation, and together these imparted a strong control on fluid flow and later diagenetic processes. Early oxidized meteoric fluids were displaced by liquid petroleum and sour gas, which were in turn succeeded by metal-rich but sulfate-poor oxidized seawater. Burial compaction during deposition of the overlying Freda Formation drove fluids through White Pine due to its situation on a paleotopographic high near the basin margin. Mineralization occurred at ~125°C at depths of ~2.0 km and spanned incipient basin inversion related to the distal effects of Grenvillian orogenesis. The hightenor copper mineral assemblage is the product of an abundant supply of metal from basaltic volcanic detritus in the Copper Harbor Formation and low seawater sulfate concentrations in late Mesoproterozoic oceans. This demonstrates that viable sediment-hosted stratiform copper systems can form when a readily leachable metal source rock is present, even if hypersaline and sulfate-rich brines are not

    Tomographic mapping of the hidden dimension in quasi-particle interference

    Get PDF
    Funding: C.A.M. acknowledges funding from EPSRC through EP/L015110/1, and C.T. and P.W. through EP/R031924/1. P.W. and T.R. are grateful for support through SARIRF funding by the University of St Andrews. I.M. acknowledges studentship support through the International Max Planck Research School for Chemistry and Physics of Quantum Materials. M.D.W., A.R., and P.D.C.K. acknowledge funding from The Leverhulme Trust. F.M. and P.D.C.K. acknowledge funding from the European Research Council (through the ERC-714193-QUESTDO project). F.M. and P.D.C.K. are grateful for support by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. P.D.C.K. acknowledges support from the UK Royal Society.Quasiparticle interference (QPI) imaging is well established to study the low-energy electronic structure in strongly correlated electron materials with unrivalled energy resolution. Yet, being a surface-sensitive technique, the interpretation of QPI only works well for anisotropic materials, where the dispersion in the direction perpendicular to the surface can be neglected and the quasiparticle interference is dominated by a quasi-2D electronic structure. Here, we explore QPI imaging of galena, a material with an electronic structure that does not exhibit pronounced anisotropy. We find that the quasiparticle interference signal is dominated by scattering vectors which are parallel to the surface plane however originate from bias-dependent cuts of the 3D electronic structure. We develop a formalism for the theoretical description of the QPI signal and demonstrate how this quasiparticle tomography can be used to obtain information about the 3D electronic structure and orbital character of the bands.Publisher PDFPeer reviewe
    corecore