119 research outputs found

    Virtual space and 2-dimensional effects in perspective displays

    Get PDF
    When interpreting three dimensional spatial relationships presented on a two dimensional display surface, the viewer is required to mentally reconstruct the original information. This reconstruction is influenced by both the perspective geometry of the displayed image and the viewer's eye position relative to the display. In a study which manipulated these variables, subjects judged the azimuth direction of a target object relative to a reference object fixed in the center of a perspective display. The results support a previously developed model which predicted that the azimuth judgement error would be a sinusoidal function of stimulus azimuth. The amplitude of this function was correctly predicted to be systematically modulated by both the perspective geometry of the image and the viewer's eye position relative to the screen. Interaction of the two components of the model, the virtual space effect and the 3D-to-2D projection effect, predicted the relative amplitudes of the sinusoidal azimuth error functions for the various conditions of the experiment. Mean azimuth judgements in some directions differed by as much as 25 degrees as a result of different combinations of eye position and image geometry. The results illustrate the need to consider the effects of perspective geometry when designing spatial information instruments, and show the model to be a reliable predictor of average performance

    Acetabular retroversion: Diagnosis and treatment

    Get PDF
    Acetabular retroversion (AR) consists of a malorientation of the acetabulum in the sagittal plane. AR is associated with changes in load transmission across the hip, being a risk factor for early osteoarthrosis. The pathophysiological basis of AR is an anterior acetabular hyper-coverage and an overall pelvic rotation.The delay or the non-diagnosis of AR could have an impact in the overall management of femoroacetabular impingement (FAI). AR is a subtype of (focal) pincer deformity.The objective of this review was to clarify the pathophysiological, diagnosis and treatment fundaments inherent to AR, using a current literature review.Radiographic evaluation is paramount in AR: the cross-over, the posterior wall and ischial spine signs are classic radiographic signs of AR. However, computed tomography (CT) evaluation permits a three-dimensional characterization of the deformity, being more reliable in its recognition.Acetabular rim trimming (ART) and periacetabular osteotomy (PAO) are the best described surgical options for the treatment of AR.The clinical outcomes of both techniques are dependent on the correct characterization of existing lesions and adequate selection of patients. Cite this article: EFORT Open Rev 2018;3:595-603. DOI: 10.1302/2058-5241.3.180015

    First Light Measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory

    Get PDF
    We present the first X-ray spectrum obtained by the Low Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 A (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Δλ≃\Delta \lambda \simeq 0.06 A (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII line at 15.014 A.Comment: 4 pages (ApJ letter LaTeX), 2 PostScript figures, accepted for publication in ApJ Letters, 200

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic

    Performance of the ARIANNA Hexagonal Radio Array

    Get PDF
    Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf of Antarctica has been completed. This detector serves as a pilot program to the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very high energy neutrinos by observing the radio pulse generated by neutrino-induced charged particle showers in the ice. All HRA stations ran reliably and took data during the entire 2014-2015 austral summer season. A new radio signal direction reconstruction procedure is described, and is observed to have a resolution better than a degree. The reconstruction is used in a preliminary search for potential neutrino candidate events in the data from one of the newly installed detector stations. Three cuts are used to separate radio backgrounds from neutrino signals. The cuts are found to filter out all data recorded by the station during the season while preserving 85.4% of simulated neutrino events that trigger the station. This efficiency is similar to that found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6 figure

    Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    Get PDF
    We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10710^{7} to 101010^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10710^{7} GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa

    Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole

    Full text link
    We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An initial prototype ARA detector system was installed in January 2011, and has been operating continuously since then. We report on studies of the background radio noise levels, the radio clarity of the ice, and the estimated sensitivity of the planned ARA array given these results, based on the first five months of operation. Anthropogenic radio interference in the vicinity of the South Pole currently leads to a few-percent loss of data, but no overall effect on the background noise levels, which are dominated by the thermal noise floor of the cold polar ice, and galactic noise at lower frequencies. We have also successfully detected signals originating from a 2.5 km deep impulse generator at a distance of over 3 km from our prototype detector, confirming prior estimates of kilometer-scale attenuation lengths for cold polar ice. These are also the first such measurements for propagation over such large slant distances in ice. Based on these data, ARA-37, the 200 km^2 array now under construction, will achieve the highest sensitivity of any planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation length analysis; for submission to Astroparticle Physic
    • …
    corecore