253 research outputs found

    CP Violation from Finite Groups

    Get PDF
    We discuss the origin of CP violation in settings with a discrete (flavor) symmetry GG. We show that physical CP transformations always have to be class-inverting automorphisms of GG. This allows us to categorize finite groups into three types: (i) Groups that do not exhibit such an automorphism and, therefore, in generic settings, explicitly violate CP. In settings based on such groups, CP violation can have pure group-theoretic origin and can be related to the complexity of some Clebsch-Gordan coefficients. (ii) Groups for which one can find a CP basis in which all the Clebsch-Gordan coefficients are real. For such groups, imposing CP invariance restricts the phases of coupling coefficients. (iii) Groups that do not admit real Clebsch-Gordan coefficients but possess a class-inverting automorphism that can be used to define a proper (generalized) CP transformation. For such groups, imposing CP invariance can lead to an additional symmetry that forbids certain couplings. We make use of the so-called twisted Frobenius-Schur indicator to distinguish between the three types of discrete groups. With Δ(27)\Delta(27), TT^{\prime}, and Σ(72)\Sigma(72) we present one explicit example for each type of group, thereby illustrating the CP properties of models based on them. We also show that certain operations that have been dubbed generalized CP transformations in the recent literature do not lead to physical CP conservation.Comment: 45 pages, 3 figure

    Gauged Discrete Symmetries and Proton Stability

    Full text link
    We discuss the results of a search for anomaly free Abelian Z_N discrete symmetries that lead to automatic R-parity conservation and prevents dangerous higher-dimensional proton decay operators in simple extensions of the minimal supersymmetric extension of the standard model (MSSM) based on the left-right symmetric group, the Pati-Salam group and SO(10). We require that the superpotential for the models have enough structures to be able to give correct symmetry breaking to MSSM and potentially realistic fermion masses. We find viable models in each of the extensions and for all the cases, anomaly freedom of the discrete symmetry restricts the number of generations.Comment: 8 pages, 2 figures; v2 : typos fixed, references adde

    Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube

    Get PDF
    We report on nonlinear cotunneling spectroscopy of a carbon nanotube quantum dot coupled to Nb superconducting contacts. Our measurements show rich subgap features in the stability diagram which become more pronounced as the temperature is increased. Applying a transport theory based on the Liouville-von Neumann equation for the density matrix, we show that the transport properties can be attributed to processes involving sequential as well as elastic and inelastic cotunneling of quasiparticles thermally excited across the gap. In particular, we predict thermal replicas of the elastic and inelastic cotunneling peaks, in agreement with our experimental results.Comment: 21 pages, 9 figures, submitted to New Journal of Physic

    Asymptotic symmetries on Kerr--Newman horizon without anomaly of diffeomorphism invariance

    Get PDF
    We analyze asymptotic symmetries on the Killing horizon of the four-dimensional Kerr--Newman black hole. We first derive the asymptotic Killing vectors on the Killing horizon, which describe the asymptotic symmetries, and find that the general form of these asymptotic Killing vectors is the universal one possessed by arbitrary Killing horizons. We then construct the phase space associated with the asymptotic symmetries. It is shown that the phase space of an extreme black hole either has the size comparable with a non-extreme black hole, or is small enough to exclude degeneracy, depending on whether or not the global structure of a Killing horizon particular to an extreme black hole is respected. We also show that the central charge in the Poisson brackets algebra of these asymptotic symmetries vanishes, which implies that there is not an anomaly of diffeomorphism invariance. By taking into account other results in the literature, we argue that the vanishing central charge on a black hole horizon, in an effective theory, looks consistent with the thermal feature of a black hole. We furthermore argue that the vanishing central charge implies that there are infinitely many classical configurations that are associated with the same macroscopic state, while these configurations are distinguished physically.Comment: 14 pages, v2: references added, minor corrections, v3: new pars and refs. added and corresponding correction

    Peripherally inserted central catheter‐related deep vein thrombosis: contemporary patterns and predictors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107486/1/jth12549.pd

    Peripherally inserted central catheter‐related deep vein thrombosis: contemporary patterns and predictors: reply

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109637/1/jth12721.pd

    Radiative Generation of the LMA Solution from Small Solar Neutrino Mixing at the GUT Scale

    Get PDF
    We show that in see-saw models with small or even vanishing lepton mixing angle θ12\theta_{12}, maximal θ23\theta_{23}, zero θ13\theta_{13} and zero CP phases at the GUT scale, the currently favored LMA solution of the solar neutrino problem can be obtained in a rather natural way by Renormalization Group effects. We find that most of the running takes place in the energy ranges above and between the see-saw scales, unless the charged lepton Yukawa couplings are large, which would correspond to a large tanβ\tan \beta in the Minimal Supersymmetric Standard Model (MSSM). The Renormalization Group evolution of the solar mixing angle θ12\theta_{12} is generically larger than the evolution of θ13\theta_{13} and θ23\theta_{23}. A large enhancement occurs for an inverted mass hierarchy and for a regular mass hierarchy with m2m1m2+m1|m_2 - m_1| \ll |m_2 + m_1|. We present numerical examples of the evolution of the lepton mixing angles in the Standard Model and the MSSM, in which the current best-fit values of the LMA mixing angles are produced with vanishing solar mixing angle θ12\theta_{12} at the GUT scale.Comment: 10 pages, 6 figures; reference added, minor changes in the text; results unchanged; final version to appear in JHE

    Male assistance in parental care does not buffer against detrimental effects of maternal inbreeding on offspring

    Get PDF
    <p>The severity of inbreeding depression often varies across environments and recent work suggests that social interactions can aggravate or reduce inbreeding depression. For example, stressful interactions such as competition can exacerbate inbreeding depression, whereas benign interactions such as parental care can buffer against inbreeding depression in offspring. Here, we test whether male assistance in parental care can buffer against the detrimental effects of maternal inbreeding on offspring fitness in the burying beetle Nicrophorus vespilloides. Our results confirm that maternal inbreeding had detrimental effects on offspring survival. However, we found no evidence that male assistance in parental care buffered against those effects on offspring fitness. Outbred females benefitted from male assistance, gaining more weight over the breeding attempt when assisted by a male. In contrast, inbred females did not benefit from male assistance, gaining as much weight regardless of whether they were assisted by a male or not. Surprisingly, we find that males gained more weight during the breeding attempt when mated to an inbred female, suggesting that males benefitted from assisting an inbred female partner in terms of their weight gain. Overall, our findings suggest that parental care or other benign social interactions may not always buffer against detrimental effects of inbreeding depression.</p
    corecore