81 research outputs found

    Opportunities for Nuclear Astrophysics at FRANZ

    Full text link
    The "Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum" (FRANZ), which is currently under development, will be the strongest neutron source in the astrophysically interesting energy region in the world. It will be about three orders of magnitude more intense than the well-established neutron source at the Research Center Karlsruhe (FZK)

    Solving the stellar 62Ni problem with AMS

    Full text link
    An accurate knowledge of the neutron capture cross sections of 62,63Ni is crucial since both isotopes take key positions which affect the whole reaction flow in the weak s process up to A=90. No experimental value for the 63Ni(n,gamma) cross section exists so far, and until recently the experimental values for 62Ni(n,gamma) at stellar temperatures (kT=30 keV) ranged between 12 and 37 mb. This latter discrepancy could now be solved by two activations with following AMS using the GAMS setup at the Munich tandem accelerator which are also in perfect agreement with a recent time-of-flight measurement. The resulting (preliminary) Maxwellian cross section at kT=30 keV was determined to be 30keV = 23.4 +/- 4.6 mb. Additionally, we have measured the 64Ni(gamma,n)63Ni cross section close to threshold. Photoactivations at 13.5 MeV, 11.4 MeV and 10.3 MeV were carried out with the ELBE accelerator at Forschungszentrum Dresden-Rossendorf. A first AMS measurement of the sample activated at 13.5 MeV revealed a cross section smaller by more than a factor of 2 compared to NON-SMOKER predictions.Comment: Proceedings of the 11th International Conference on Accelerator Mass Spectrometry in Rome, Sept. 14-19, 2008; to be published in Nucl. Instr. Meth.

    L’Observation du Comportement du Nouveau-Ne: Une Source Pertinente d’Informations Medicales

    Get PDF
    L’observation du comportement du nouveau-né est une source importante d’informations d’ordre médical. Trois domaines bénéficient des données de l’observation : 1) l’analyse du développement grâce à l’utilisation de l’Assessment of Preterm Infant Behavior (évaluation du comportement de l’enfant prématuré) ; 2) l’évaluation de la douleur dominée par l’analyse de l’expression faciale grâce à des échelles validées, telle que le Neonatal Facial Coding System (système néonatal de codage facial) ; 3) la recherche de lésions cérébrales par le Quality Assessment of General Movements (évaluation de la qualité des mouvements généraux). L’observation comportementale fondée sur des outils validés par la recherche clinique constitue un complément utile des données de l’imagerie en période néonatale. The neonatal behavioral observation is an important source of medical informations in three domains: 1) assessment of development which can be done with the Assessment of Preterm Infant Behavior, 2) assessment of pain with the analysis of facial expression using validated pain scales such as the Neonatal Facial Coding System, 3) assessement of brain injuries with the Quality Assessment of General Movements. Such a behavioral observation of the newborn using validated tools is a useful complement of the neuro-imaging techniques

    Measurement of neutron capture on 48^{48}Ca at thermal and thermonuclear energies

    Full text link
    At the Karlsruhe pulsed 3.75\,MV Van de Graaff accelerator the thermonuclear 48^{48}Ca(n,γ\gamma)49^{49}Ca(8.72\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\,keV γ\gamma-ray line of the 49^{49}Ca-decay. Samples of CaCO3_3 enriched in 48^{48}Ca by 77.87\,\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay γ\gamma-ray lines using the same target material. The 48^{48}Ca(n,γ\gamma)49^{49}Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in 49^{49}Ca. The small coherent elastic cross section of 48^{48}Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of 49^{49}Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of 49^{49}Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for 48^{48}Ca(d,p)49^{49}Ca and 48^{48}Ca(n,γ\gamma)49^{49}Ca.Comment: 15 pages (uses Revtex), 7 postscript figures (uses psfig), accepted for publication in PRC, uuencoded tex-files and postscript-files also available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Ca.u

    Neutron-induced nucleosynthesis

    Get PDF
    Neutron--induced nucleosynthesis plays an important role in astrophysical scenarios like in primordial nucleosynthesis in the early universe, in the s--process occurring in Red Giants, and in the α\alpha--rich freeze--out and r--process taking place in supernovae of type II. A review of the three important aspects of neutron--induced nucleosynthesis is given: astrophysical background, experimental methods and theoretical models for determining reaction cross sections and reaction rates at thermonuclear energies. Three specific examples of neutron capture at thermal and thermonuclear energies are discussed in some detail.Comment: 40 pages (uses kluwer.sty), 2 postscript figures (uses psfig), accepted for publication in Surveys in Geophysics, uuencoded tex-files and postscript-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Geo.u

    Etude des caractéristiques globales des ondes de gravité atmosphérique à l'aide des mesures de vent du satellite de l'ESA Aeolus

    No full text
    Understanding and predicting the evolution of global climate strongly relies on the knowledge of dynamical processes in the middle atmosphere such as atmospheric waves. Since the global atmospheric circulation is largely driven by middle atmosphere dynamics, it is essential that the climate models take a proper account for the dynamical processes, which has not been fully understood yet. Small-scale atmospheric waves, called internal gravity waves (IGWs) pose a particular challenge for models, whereas inaccurate parameterization of IGWs can dramatically bias the predictions of future atmospheric circulation changes. This issue is aggravated by insufficient understanding of IGW sources, propagation and dissipation, but above all by the lack of observations of wind in the stratosphere. Indeed, spatially-sparse radiosoundings are essentially the only source of data on stratospheric wind profiles. With that, they only provide a snapshot of the local atmospheric conditions therefore missing important IGW parameters. European Space Agency's Aeolus satellite mission is designed to provide global information on the wind speed from the ground up to 30 km, which is highly demanded for weather forecasting. Aeolus satellite has been set into orbit in August 2018 and its payload consists of a sophisticated ALADIN lidar instrument measuring wind velocity by sensing Doppler spectral shift of the laser echo scattered by the different layers of the atmosphere. Aeolus global-scale wind measurements are expected to be of great value for studying the dynamical processes in the stratosphere.The primary objective of this doctoral project is to explore and quantify the capacities of Aeolus observations in capturing and resolving dynamical processes such as IGWs at various spatial and temporal scales. The work will consist first of all in geophysical analysis of Aeolus wind profiles for deriving IGW parameters such as horizontal and vertical wavelengths, energy and momentum flux. The retrieved parameters and their variability in time and space will be compared with those derived from global temperature profiling data of GPS radio occultation missions such as GRAS onboard MetOp satellites. Another task will be to validate the quality of Aeolus wind measurements using the two French ground-based Doppler lidars operating at a mid-latitude site (Observatoire de Haute-Provence) and at a south tropical site (Maïdo Observatory à la Réunion). The time-resolved wind measurements by ground-based lidars will also be used for IGW analysis. An important outcome of this doctoral project will be the first ever climatology of IGW parameters based on a combination of global-coverage wind and temperature profilingLa compréhension et la prédiction de l'évolution du climat global dépendent fortement de la connaissance des processus dynamiques dans l'atmosphère moyenne, comme les ondes atmosphériques. Étant donné que la circulation atmosphérique globale est largement influencée par la dynamique de l'atmosphère moyenne, il est essentiel que les modèles climatiques tiennent compte des processus dynamiques qui n'ont pas encore été complètement compris. Les ondes atmosphériques à petite échelle, appelées ondes de gravité internes (IGWs), posent un défi particulier pour les modèles, alors que la paramétrisation inexacte des IGWs peut biaiser de façon spectaculaire les prédictions des changements futurs de la circulation atmosphérique. Cette question est aggravée par une compréhension insuffisante de la génération des IGWs, de leur propagation et de leur dissipation, mais surtout par le manque d'observations du vent dans la stratosphère. En effet, les radiosondages dont la répartition est spatialement inhomogène sont pratiquement la seule source de données sur les profils de vent stratosphériques. Avec cela, ils ne fournissent qu'un «instantané» des conditions atmosphériques locales, ne permettant pas d'en déduire certains paramètres importants des IGWs. La mission satellitaire d'Aeolus de l'Agence Spatiale Européenne est conçue pour fournir des informations globales sur la vitesse du vent du sol à 30 km, variable essentielle pour les prévisions météorologiques. Le satellite Aeolus a été mis en orbite en aout 2018 et sa charge utile consiste en un lidar sophistiqué ALADIN mesurant la vitesse du vent par détection du décalage spectral Doppler de l'écho laser rétrodiffusé par les différentes couches atmosphériquesLes mesures de vent à l'échelle globale d'Aeolus seront d'une grande valeur pour l'étude des processus dynamiques dans la stratosphère. L'objectif principal de ce projet de thèse est d'explorer et de quantifier les capacités des observations d'Aeolus à capturer et à résoudre les processus dynamiques tels que les IGWs à différentes échelles spatiales ets temporelles. Le travail consistera tout d'abord dans l'analyse géophysique des profils de vent d'Aeolus pour dériver les paramètres des IGWs tels que les longueurs d'ondes horizontales et verticales, l'énergie et le flux de quantité de mouvement. Les paramètres obtenus et leur variabilité spatiale et temporelle seront comparés à ceux déduits des données globales de température des missions de radio occultation GPS telles que GRAS sur les satellite MetOp. Une autre tâche consistera à valider la qualité des mesures de vent d'Aeolus à l'aide des deux lidars français Doppler fonctionnant au sol sur un site de moyenne latitude (Observatoire de Haute-Provence) et sur un site tropical sud (Observatoire du Maïdo à la Réunion). Les mesures de vent résolues dans le temps des lidars au sol seront également utilisées pour l'analyse des IGWs. Un résultat important de ce projet de thèse sera la première climatologie des paramètres des IGWs s'appuyant sur une combinaison de profils de vent et de température à couverture globale

    Study of global atmospheric gravity waves characteristics using ESA Aeolus satellite wind observations

    No full text
    La compréhension et la prédiction de l'évolution du climat global dépendent fortement de la connaissance des processus dynamiques dans l'atmosphère moyenne, comme les ondes atmosphériques. Étant donné que la circulation atmosphérique globale est largement influencée par la dynamique de l'atmosphère moyenne, il est essentiel que les modèles climatiques tiennent compte des processus dynamiques qui n'ont pas encore été complètement compris. Les ondes atmosphériques à petite échelle, appelées ondes de gravité internes (IGWs), posent un défi particulier pour les modèles, alors que la paramétrisation inexacte des IGWs peut biaiser de façon spectaculaire les prédictions des changements futurs de la circulation atmosphérique. Cette question est aggravée par une compréhension insuffisante de la génération des IGWs, de leur propagation et de leur dissipation, mais surtout par le manque d'observations du vent dans la stratosphère. En effet, les radiosondages dont la répartition est spatialement inhomogène sont pratiquement la seule source de données sur les profils de vent stratosphériques. Avec cela, ils ne fournissent qu'un «instantané» des conditions atmosphériques locales, ne permettant pas d'en déduire certains paramètres importants des IGWs. La mission satellitaire d'Aeolus de l'Agence Spatiale Européenne est conçue pour fournir des informations globales sur la vitesse du vent du sol à 30 km, variable essentielle pour les prévisions météorologiques. Le satellite Aeolus a été mis en orbite en aout 2018 et sa charge utile consiste en un lidar sophistiqué ALADIN mesurant la vitesse du vent par détection du décalage spectral Doppler de l'écho laser rétrodiffusé par les différentes couches atmosphériquesLes mesures de vent à l'échelle globale d'Aeolus seront d'une grande valeur pour l'étude des processus dynamiques dans la stratosphère. L'objectif principal de ce projet de thèse est d'explorer et de quantifier les capacités des observations d'Aeolus à capturer et à résoudre les processus dynamiques tels que les IGWs à différentes échelles spatiales ets temporelles. Le travail consistera tout d'abord dans l'analyse géophysique des profils de vent d'Aeolus pour dériver les paramètres des IGWs tels que les longueurs d'ondes horizontales et verticales, l'énergie et le flux de quantité de mouvement. Les paramètres obtenus et leur variabilité spatiale et temporelle seront comparés à ceux déduits des données globales de température des missions de radio occultation GPS telles que GRAS sur les satellite MetOp. Une autre tâche consistera à valider la qualité des mesures de vent d'Aeolus à l'aide des deux lidars français Doppler fonctionnant au sol sur un site de moyenne latitude (Observatoire de Haute-Provence) et sur un site tropical sud (Observatoire du Maïdo à la Réunion). Les mesures de vent résolues dans le temps des lidars au sol seront également utilisées pour l'analyse des IGWs. Un résultat important de ce projet de thèse sera la première climatologie des paramètres des IGWs s'appuyant sur une combinaison de profils de vent et de température à couverture globale.Understanding and predicting the evolution of global climate strongly relies on the knowledge of dynamical processes in the middle atmosphere such as atmospheric waves. Since the global atmospheric circulation is largely driven by middle atmosphere dynamics, it is essential that the climate models take a proper account for the dynamical processes, which has not been fully understood yet. Small-scale atmospheric waves, called internal gravity waves (IGWs) pose a particular challenge for models, whereas inaccurate parameterization of IGWs can dramatically bias the predictions of future atmospheric circulation changes. This issue is aggravated by insufficient understanding of IGW sources, propagation and dissipation, but above all by the lack of observations of wind in the stratosphere. Indeed, spatially-sparse radiosoundings are essentially the only source of data on stratospheric wind profiles. With that, they only provide a snapshot of the local atmospheric conditions therefore missing important IGW parameters. European Space Agency's Aeolus satellite mission is designed to provide global information on the wind speed from the ground up to 30 km, which is highly demanded for weather forecasting. Aeolus satellite has been set into orbit in August 2018 and its payload consists of a sophisticated ALADIN lidar instrument measuring wind velocity by sensing Doppler spectral shift of the laser echo scattered by the different layers of the atmosphere. Aeolus global-scale wind measurements are expected to be of great value for studying the dynamical processes in the stratosphere.The primary objective of this doctoral project is to explore and quantify the capacities of Aeolus observations in capturing and resolving dynamical processes such as IGWs at various spatial and temporal scales. The work will consist first of all in geophysical analysis of Aeolus wind profiles for deriving IGW parameters such as horizontal and vertical wavelengths, energy and momentum flux. The retrieved parameters and their variability in time and space will be compared with those derived from global temperature profiling data of GPS radio occultation missions such as GRAS onboard MetOp satellites. Another task will be to validate the quality of Aeolus wind measurements using the two French ground-based Doppler lidars operating at a mid-latitude site (Observatoire de Haute-Provence) and at a south tropical site (Maïdo Observatory à la Réunion). The time-resolved wind measurements by ground-based lidars will also be used for IGW analysis. An important outcome of this doctoral project will be the first ever climatology of IGW parameters based on a combination of global-coverage wind and temperature profilin
    corecore