42 research outputs found

    Transport and Magnetic Studies of New Mixed-Valence Compounds: K3Cu8Se6, KCu3Se2, K3Cu8Te6 and BaCuS3-x

    Get PDF
    New mixed-valent copper chalcogenides BaCuS3_x and K3Cu8X6 with X = Se or Te and KCu3Se2, with chemical patterns corresponding to the recently investigated K3Cu8S6 and KCu3S2, were synthesized. For these new samples the results of resistivity and magnetic susceptibility measurements are presented. For BaCuS3_x, K3Cu8Se6 and KCu3Se2 the metal—insulator transition is observed with the low temperature phase being metallic, which is untypical, whereas K3Cu8Te6 is a metal in the investigated temperature range. The temperature dependence of magnetic susceptibility of the studied samples testifies to their diamagnetic or weakly paramagnetic behaviour

    Lessons from chlorophylls : modifications of porphyrinoids towards optimized solar energy conversion

    Get PDF
    Practical applications of photosynthesis-inspired processes depend on a thorough understanding of the structures and physiochemical features of pigment molecules such as chlorophylls and bacteriochlorophylls. Consequently, the major structural features of these pigments have been systematically examined as to how they influence the S_{1} state energy, lifetimes, quantum yields, and pigment photostability. In particular, the effects of the macrocyclic π-electron system, central metal ion (CMI), peripheral substituents, and pigment aggregation, on these critical parameters are discussed. The results obtained confirm that the π-electron system of the chromophore has the greatest influence on the light energy conversion capacity of porphyrinoids. Its modifications lead to changes in molecular symmetry, which determine the energy levels of frontier orbitals and hence affect the S_{1} state properties. In the case of bacteriochlorophylls aggregation can also strongly decrease the S_{1} energy. The CMI may be considered as another influential structural feature which only moderately influences the ground-state properties of bacteriochlorophylls but strongly affects the singlet excited-state. An introduction of CMIs heavier than Mg^{2+} significantly improves pigments' photostabilities, however, at the expense of S_{1} state lifetime. Modifications of the peripheral substituents may also influence the S1 energy, and pigments’ redox potentials, which in turn influence their photostability

    Tritolylporphyrin dimer as a new potent hydrophobic sensitizer for photodynamic therapy of melanoma

    Get PDF
    We report the synthesis, photochemical and photophysical properties and preliminary studies on biological effect of a new tritolylporphyrin dimer (T-D). Absorption and emission properties of T-D suggest its possible use in photodynamic therapy. T-D is capable of singlet oxygen production with 0.8 quantum yield. It also has a high photostability. The photodynamic properties of the dimer were examined following the growth of SKMEL 188 (human melanoma) cells irradiated with red light (cut off vs. non-irradiated cells) for an 81 J/cm2 dose. Our results suggest that tritolylporphyrine dimer T-D may be an interesting hydrophobic sensitizer for photodynamic therapy

    Evolution of glassy carbon under heat treatment : correlation structure-mechanical properties

    Get PDF
    In order to accommodate an increasing demand for glassy carbon products with tailored characteristics, one has to understand the origin of their structure-related properties. In this work, through the use of high-resolution transmission electron microscopy, Raman spectroscopy, and electron energy loss spectroscopy it has been demonstrated that the structure of glassy carbon at different stages of the carbonization process resembles the curvature observed in fragments of nanotubes, fullerenes, or nanoonions. The measured nanoindentation hardness and reduced Young’s modulus change as a function of the pyrolysis temperature from the range of 600–2500 °C and reach maximum values for carbon pyrolyzed at around 1000 °C. Essentially, the highest values of the mechanical parameters for glassy carbon manufactured at that temperature can be related to the greatest amount of non-planar sp2-hybridized carbon atoms involved in the formation of curved graphene-like layers. Such complex labyrinth- like structure with sp2-type bonding would be rigid and hard to break that explains the glassy carbon high strength and hardness

    Cobalt protoporphyrin IX increases endogenous G-CSF and mobilizes HSC and granulocytes to the blood

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO- 1 independent. Concluding, CoPP increases expression of mobilization- related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation

    Photodynamic effects of two water soluble porphyrins evaluated on human malignant melanoma cells in vitro

    Get PDF
    Two water soluble porphyrins: meso-tetra-4-N-methylpyridyl-porphyrin iodide (P1) and 5,10-di-(4-acetamidophenyl)-15,20-di-(4-N-methylpyridyl) porphyrin (P2) were synthesised and evaluated in respect to their photochemical and photophysical prop-erties as well as biological activity. Cytotoxic and phototoxic effects were evaluated in human malignant melanoma Me45 line using clonogenic assay, cytological study of micronuclei, apoptosis and necrosis frequency and inhibition of growth of megacolonies. Both porphyrins were characterised by high UV and low visible light absorptions. Dark toxicity measured on the basis of the clonogenic assay and inhibi- tion of megacolony growth area indicated that P1 was non-toxic at concentrations up to 50 g/ml (42.14 M) and P2 at concentrations up to 20 g/ml (16.86 M). The photodynamic effect induced by red light above 630 nm indicated that both porphy-rins were able to inhibit growth of melanoma megacolonies at non-toxic concentra-tions. Cytologic examination showed that the predominant mode of cell death was ne-crosis

    Iron chelators and exogenic photosensitizers. Synergy through oxidative stress gene expression

    Get PDF
    In non-invasive anticancer photodynamic therapy (PDT), a nontoxic photosensitizer (PS), which is activated by visible light, is used as a magic bullet that selectively destroys cancer cells. Recently, we described the combined therapy of 5-aminolevulinic acid (ALA-PDT) with thiosemicarbazone (TSC), i.e. an iron-chelating agent. This resulted in a strong synergistic effect. Herein, we investigated a novel strategy using a combination of PDT consist of the xenobiotic-porphyrin type PS with TSC. We observed a synergistic effect for all of the pairs of TSC-PS. This approach can be rationalized by the fact that both chlorin and TSC can affect the generation of reactive oxygen species (ROS). In order to elucidate the plausible mechanism of action, we also combined the investigated PSs with DFO, which forms complexes that are redox inactive. We detected a slight antagonism or additivity for this combination. This may suggest that the ability of an iron chelator (IC) to participate in the production of ROS and the generation of oxidative stress is important

    Synthesis of New Styrylquinoline Cellular Dyes, Fluorescent Properties, Cellular Localization and Cytotoxic Behavior

    Get PDF
    New styrylquinoline derivatives with their photophysical constants are described. The synthesis was achieved via Sonogashira coupling using the newly developed heterogeneous nano-Pd/Cu catalyst system, which provides an efficient synthesis of high purity products. The compounds were tested in preliminary fluorescent microscopy studies to in order to identify their preferable cellular localization, which appeared to be in the lipid cellular organelles. The spectroscopic properties of the compounds were measured and theoretical TD- DFT calculations were performed. A biological analysis of the quinolines that were tested consisted of cytotoxicity assays against normal human fibroblasts and colon adenocarcinoma cells. All of the compounds that were studied appeared to be safe and indifferent to cells in a high concentration range. The presented results suggest that the quinoline compounds that were investigated in this study may be valuable structures for development as fluorescent dyes that could have biological applications

    meso-5,10,15,20-Tetrakis(4-hydroxy-3-methoxyphenyl)porphyrin propionic acid monosolvate

    Get PDF
    In the title compound, C48H38N4O8·C3H6O2, the porphyrin molecule is centrosymmetric. The propionic acid solvent molecule is disordered over two sets of sites with equal occupancy factors. The porphyrin central core is almost planar, with an r.m.s. deviation of the fitted atoms of 0.045 Å. The substituent benzene rings make dihedral angles of 70.37 (4) and 66.95 (4)° with respect to the porphyrin core plane. The crystal structure is stabilized by an interesting network of hydrogen bonds. Porphyrin molecules are connected by O—H...O hydrogen bonds creating ribbons running along the [101] direction. Weak C—H...O hydrogen bonds connect separate molecular ribbons in the [110] direction, creating (-111) layers. Intramolecular N—H...N hydrogen bonds also occur. The propionic acid molecules are connected by pairs of —H...O hydrogen bonds, creating dimers

    Bragg concentrators for hard (> 10 keV) X-ray astronomy: Status report

    Get PDF
    The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging perfomances with respect to the directviewing detectors, utilized until now. We present recent results obtained from our Group regarding the possible use of Bragg-diffraction technique to design hard X-ray focusing telescopes
    corecore