17 research outputs found

    Viral and immunological factors associated with breast milk transmission of SIV in rhesus macaques

    Get PDF
    BACKGROUND: The viral and host factors involved in transmission of HIV through breastfeeding are largely unknown, and intervention strategies are urgently needed to protect at-risk populations. To evaluate the viral and immunological factors directly related to milk transmission of virus, we have evaluated the disease course of Simian Immunodeficiency Virus (SIV) in lactating rhesus macaques (Macaca mulatta) as a model of natural breast milk transmission of HIV. RESULTS: Fourteen lactating macaques were infected intravenously with SIV/DeltaB670, a pathogenic isolate of SIV and were pair-housed with their suckling infants throughout the disease course. Transmission was observed in 10 mother-infant pairs over a one-year period. Two mothers transmitted virus during the period of initial viremia 14–21 days post inoculation (p.i.) and were classified as early transmitters. Peak viral loads in milk and plasma of early transmitters were similar to other animals, however the early transmitters subsequently displayed a rapid progressor phenotype and failed to control virus expression as well as other animals at 56 days p.i. Eight mothers were classified as late transmitters, with infant infection detected at time points in the chronic stage of the maternal SIV disease course (81 to 360 days). Plasma viral loads, CD4+ T cell counts and SIV-specific antibody titers were similar in late transmitters and non-transmitters. Late breast milk transmission, however, was correlated with higher average milk viral loads and more persistent viral expression in milk 12 to 46 weeks p.i. as compared to non-transmitters. Four mothers failed to transmit virus, despite disease progression and continuous lactation. CONCLUSION: These studies validate the SIV-infected rhesus macaque as a model for breast milk transmission of HIV. As observed in studies of HIV-infected women, transmission occurred at time points throughout the period of lactation. Transmission during the chronic stage of SIV-infection correlated with a threshold level of virus expression as well as more persistent shedding in milk. This model will be a valuable resource for deciphering viral and host factors responsible for transmission of HIV through breastfeeding

    ChimeriVax-West Nile Virus Live-Attenuated Vaccine: Preclinical Evaluation of Safety, Immunogenicity, and Efficacy

    No full text
    The availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses. Amino acid sequence homology between the envelope protein (E) of JE and WN viruses facilitated targeting attenuating mutation sites to develop the WN vaccine. Here we discuss preclinical studies with the ChimeriVax-WN virus in mice and macaques. ChimeriVax-WN virus vaccine is less neurovirulent than the commercial YF 17D vaccine in mice and nonhuman primates. Attenuation of the virus is determined by the chimeric nature of the construct containing attenuating mutations in the YF 17D virus backbone and three point mutations introduced to alter residues 107, 316, and 440 in the WN virus E protein gene. The safety, immunogenicity, and efficacy of the ChimeriVax-WN(02) vaccine in the macaque model indicate the vaccine candidate is expected to be safe and immunogenic for humans

    West Nile Virus Infection in Nonhuman Primate Breeding Colony, Concurrent with Human Epidemic, Southern Louisiana

    No full text
    During the summer of 2002, an epidemic of West Nile meningoencephalitis occurred in southern Louisiana. Following the outbreak, blood samples were collected from 1,692 captive rhesus monkeys (Macaca mulatta), pigtail macaques (M. nemestrina), and baboons (Papio spp.) that were permanently housed outdoors at a nonhuman primate breeding facility in St. Tammany Parish, Louisiana. The serum samples were examined for antibodies to West Nile virus (WNV). Overall, 36% of the captive nonhuman primates had WNV antibodies; comparison of these samples with banked serum samples from previous blood collections indicated that the animals were infected subclinically from February to August 2002. WNV activity was demonstrated in surveillance at the nonhuman primate-breeding colony and in the neighboring community during this same period. The high infection rate in this captive nonhuman primate population illustrates the intensity of WNV transmission that can occur silently in nature among other susceptible vertebrates during epidemic periods

    Images of tissue inflammation and <i>B. burgdorferi</i> antigen in tissues from animals treated in the late, disseminated phase (Experiment 1).

    No full text
    <p>For antigen detection, samples of tissue were stained for fluorescent detection (IFA) with anti-<i>B. burgdorferi</i> monoclonal (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0029914#s4" target="_blank">Materials and Methods</a>) antibody. (A) Hematoxylin &Eosin stain showing monocytic and lymphocytic infiltrate in a heart section (20Ă—) of a treated animal (AM38). (B) Image of positive IFA staining from the heart tissue of the same animal.</p
    corecore