25 research outputs found
Satisfiability Modulo Transcendental Functions via Incremental Linearization
In this paper we present an abstraction-refinement approach to Satisfiability
Modulo the theory of transcendental functions, such as exponentiation and
trigonometric functions. The transcendental functions are represented as
uninterpreted in the abstract space, which is described in terms of the
combined theory of linear arithmetic on the rationals with uninterpreted
functions, and are incrementally axiomatized by means of upper- and
lower-bounding piecewise-linear functions. Suitable numerical techniques are
used to ensure that the abstractions of the transcendental functions are sound
even in presence of irrationals. Our experimental evaluation on benchmarks from
verification and mathematics demonstrates the potential of our approach,
showing that it compares favorably with delta-satisfiability /interval
propagation and methods based on theorem proving
An Axiomatic Approach to Liveness for Differential Equations
This paper presents an approach for deductive liveness verification for
ordinary differential equations (ODEs) with differential dynamic logic.
Numerous subtleties complicate the generalization of well-known discrete
liveness verification techniques, such as loop variants, to the continuous
setting. For example, ODE solutions may blow up in finite time or their
progress towards the goal may converge to zero. Our approach handles these
subtleties by successively refining ODE liveness properties using ODE
invariance properties which have a well-understood deductive proof theory. This
approach is widely applicable: we survey several liveness arguments in the
literature and derive them all as special instances of our axiomatic refinement
approach. We also correct several soundness errors in the surveyed arguments,
which further highlights the subtlety of ODE liveness reasoning and the utility
of our deductive approach. The library of common refinement steps identified
through our approach enables both the sound development and justification of
new ODE liveness proof rules from our axioms.Comment: FM 2019: 23rd International Symposium on Formal Methods, Porto,
Portugal, October 9-11, 201
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
LNCS
Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate affine flowpipes. But interval methods impose bounded and rigid shapes, which make refinement expensive and fixpoint detection difficult. Template polyhedra, on the other hand, can be adapted flexibly and can be unbounded, but sound template refinement for unbounded reachability analysis has been implemented only for systems with piecewise constant dynamics. We capitalize on the advantages of both techniques, combining interval arithmetic and template polyhedra, using the former to abstract time and the latter to abstract space. During a CEGAR loop, whenever a spurious error trajectory is found, we compute additional space constraints and split time intervals, and use these space-time interpolants to eliminate the counterexample. Space-time interpolation offers a lazy, flexible framework for increasing precision while guaranteeing soundness, both for error avoidance and fixpoint detection. To the best of out knowledge, this is the first abstraction refinement scheme for the reachability analysis over unbounded and dense time of affine hybrid systems, which is both sound and automatic. We demonstrate the effectiveness of our algorithm with several benchmark examples, which cannot be handled by other tools
Computation of Lyapunov functions for systems with multiple attractors
We present a novel method to compute Lyapunov functions for continuous-time systems with multiple local attractors. In the proposed method one first computes an outer approximation of the local attractors using a graphtheoretic approach. Then a candidate Lyapunov function is computed using a Massera-like construction adapted to multiple local attractors. In the final step this candidate Lyapunov function is interpolated over the simplices of a simplicial complex and, by checking certain inequalities at the vertices of the complex, we can identify the region in which the Lyapunov function is decreasing along system trajectories. The resulting Lyapunov function gives information on the qualitative behavior of the dynamics, including lower bounds on the basins of attraction of the individual local attractors. We develop the theory in detail and present numerical examples demonstrating the applicability of our method
Review on computational methods for Lyapunov functions
Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
Uncertain Data Dependency Constraints in Matrix Models
International audienceUncertain data due to imprecise measurements is commonly specified as bounded intervals in a constraint decision or optimization problem. Dependencies do exist among such data, e.g. upper bound on the sum of uncertain production rates per machine, sum of traffic distribution ratios from a router over several links. For tractability reasons existing approaches in constraint programming or robust optimization frameworks assume independence of the data. This assumption is safe, but can lead to large solution spaces, and a loss of problem structure. Thus it cannot be overlooked. In this paper we identify the context of matrix models and show how data dependency constraints over thecolumns of such matrices can be modeled and handled efficiently in relationship with the decision variables. Matrix models are linear models whereby the matrix cells specify for instance, the duration of production per item, the production rates, or the wage costs, in applications such as production planning, economics, inventory management. Data imprecision applies to the cells of the matrix and the output vector. Our approach contributes the following results: 1) the identification of the context of matrix models with data constraints, 2) an efficient modeling approach of such constraints that suits solvers from multiple paradigms. An illustration of the approach and its benefits are shown on a production planning problem
Communicating Sustainability through Design within Retail Environments
This thesis uses a systematic understanding of sustainability informed by human needs, learning and design theory to explore ways in which small retail environments can effectively communicate sustainability concepts. The envisioned outcome of successfully communicating and implementing sustainability within retail environments is a lasting change in people’s daily behaviors. The methods of literature review, surveys, human needs investigation and professional validation are used to develop a behavioral change model centered on human needs and learning as well as six communication guidelines. The appendix of this thesis contains a user-friendly pocket guidebook titled The Six Guidelines for Sustainable Retail. The guidebook is designed as a quick-reference tool for retailers, designers and employees. It contains principles, visuals and concepts of sustainability for daily communication and comprehension purposes