41 research outputs found

    Application of convolution neural networks for critical frequency fₒF2 prediction

    Get PDF
    Ionosphere has an important impact on the quality of radio communication, radar, and global positioning. One of the essential characteristics describing the state of the ionosphere is its critical frequency fₒF2. Its prediction provides effective modes of operation of technical radio equipment as well as enables calculation of the corrections needed to improve the accuracy of its functioning. Different physical and empirical models are generally used for fₒF2 prediction. This paper proposes an empirical prediction technique based on machine learning methods and observational history. It relies on a regression approach to the prediction based on the known daily quasi-periodicity of ionospheric parameters related to solar illumination. Algorithmically, this approach is implemented in the form of convolutional neural networks with two-dimensional convolution. The input data for the analysis is presented as two-dimensional solar time — date matrices. The model was trained on data from the mid-latitude ionosonde in Irkutsk (RF) and tested using data from several mid-latitude ionosondes: Arti (RF), Warsaw (Poland), Mohe (China). It is shown that the main contribution to the prediction value of fₒF2 is made by the data on the nearest few days before the prediction; the contribution of the remaining days strongly decreases. This model has the following forecast quality metrics (Pearson correlation coefficient 0.928, root mean square error 0.598 MHz, mean absolute error in percent 10.45 %, coefficient of determination 0.861) and can be applied to fₒF2 forecast in middle latitudes

    Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming

    Get PDF
    We present the results of complex obser-vations of various parameters of the middle and upper atmosphere over Siberia in December 2012 – January 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentration from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ratio of concentrations of atomic oxygen to molecular nitrogen (O/N2) in the thermosphere. To interpret the observed disturbances in the upper atmosphere, the experimental measurements are compared with the results of model calculations obtained with the Global Self-consistent Model of Thermosphere—Ionosphere—Protonosphere (GSM TIP). The response of the upper atmosphere to the SSW event is shown to be a decrease in foF2 and TEC during the evolution of the warming event and a prolonged increase in O/N2, foF2, and TEC after the SSW maximum. For the first time, we observe the relation between the increase in stratospheric ozone, thermospheric O/N2, and ionospheric electron density for a fairly long time (up to 20 days) after the SSW maximum at midlatitudes

    Spatial and Temporal Evolution of Different‐Scale Ionospheric Irregularities in Central and East Siberia During the 27–28 May 2017 Geomagnetic Storm

    Get PDF
    We present a multi-instrumental study of ionospheric irregularities of different scales (from tens of centimeters to few kilometers) observed over the Central and East Siberia, Russia, during a moderate-to-strong geomagnetic storm on 27–28 May 2017. From high-frequency (HF) and ultrahigh-frequency (UHF) radar data, we observed an intense auroral backscatter developed right after the initial phase of the geomagnetic storm. Additionally, we examined variations of Global Positioning System (GPS)-based ROT (rate of TEC changes, where TEC is total electron content) for available GPS receivers in the region. Ionosondes, HF, and UHF radar data exhibited a presence of intense multi-scale ionospheric irregularities. We revealed a correlation between different-scale Auroral/Farley-Buneman ionospheric irregularities of the E layer during the geomagnetic storm. The combined analysis showed that an area of intense irregularities is well connected and located slightly equatorward to field-aligned currents (FACs) and auroral oval at different stages of the geomagnetic storm. An increase and equatorward displacement of Region 1 (R1)/Region 2 (R2) FACs leads to appearance and equatorward expansion of ionospheric irregularities. During downward (upward) R1 FAC and upward (downward) R2 FAC, the eastward and upward (westward and downward) E × B drift of ionospheric irregularities occurred. Simultaneous disappearance of UHF/HF auroral backscatter and GPS ROT decrease occurred during a prolonged near noon reversal of R1 and R2 FAC directions that accompanied by R1/R2 FAC degradation and disappearance of high-energy auroral precipitation

    Morphology of Traveling Wave Disturbances Recorded in Eastern Siberia in 630 nm Atomic Oxygen Emission

    No full text
    Our paper presents the results of investigating wave structures detected in 630 nm atomic oxygen emission intensity (airglow height is ~180–300 km). The study employs data from a wide-angle optical system installed at the Geophysical Observatory of the ISTP SB RAS (51°48′ N, 103°04′ E). It describes the algorithm to identify wave disturbances and determine their main parameters in the optical system images. The results obtained due to automatic processing of 2014–2021 data archives are presented. The most probable values of the wave disturbances propagation velocity are about 80 m/s. The horizontal wavelengths and periods are in the range of ~30–400 km and 60–120 min, respectively. The predominant direction of disturbances propagation is to the southwest. The received data of optical and radio observations are compared. We found both similarities and differences in the wavelike structures direction, which are to be investigated in the future

    Morphology of Traveling Wave Disturbances Recorded in Eastern Siberia in 630 nm Atomic Oxygen Emission

    No full text
    Our paper presents the results of investigating wave structures detected in 630 nm atomic oxygen emission intensity (airglow height is ~180–300 km). The study employs data from a wide-angle optical system installed at the Geophysical Observatory of the ISTP SB RAS (51°48′ N, 103°04′ E). It describes the algorithm to identify wave disturbances and determine their main parameters in the optical system images. The results obtained due to automatic processing of 2014–2021 data archives are presented. The most probable values of the wave disturbances propagation velocity are about 80 m/s. The horizontal wavelengths and periods are in the range of ~30–400 km and 60–120 min, respectively. The predominant direction of disturbances propagation is to the southwest. The received data of optical and radio observations are compared. We found both similarities and differences in the wavelike structures direction, which are to be investigated in the future
    corecore