325 research outputs found

    Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    Get PDF
    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies

    Dermatofibrosarcoma protuberans treated by micrographic surgery

    Get PDF
    Dermatofibrosarcoma protuberans is an uncommon cutaneous tumour which rarely metastasises. However, local recurrence following apparently adequate surgical excision is well recognised, presumably as a result of sub-clinical contiguous growth, for which micrographically controlled excision would be a logical treatment. A retrospective study of all patients treated by micrographic surgery, from April 1995–March 2000, at a tertiary skin oncology centre. Twenty-one patients (11 males), age 14 to 71 years with dermatofibrosarcoma protuberans on the trunk (10 patients), groin (four), head and neck (four), and limbs (three) were treated. In 15 patients one micrographic layer cleared the tumour, and four were cleared with two layers. For one patient the second stage was completed by conventional excision guided by positive margins. Another patient with a multiply recurrent perineal dermatofibrosarcoma protuberans, not cleared in one area after two layers, died from a pulmonary embolus before total clearance could be achieved. There was no correlation between tumour size and lateral excision margin. No recurrence was observed during the follow-up, from 21 to 80 months, median 47 months. The study provides further support for micrographic surgery as the treatment of choice for dermatofibrosarcoma protuberans

    Osseointegration of zirconia implants: an SEM observation of the bone-implant interface

    Get PDF
    Background The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. Methods A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Gottinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Results Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. Conclusion The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level

    Human T Cell Leukemia Virus Reactivation with Progression of Adult T-Cell Leukemia-Lymphoma

    Get PDF
    Background: Human T-cell leukemia virus-associated adult T-cell leukemia-lymphoma (ATLL) has a very poor prognosis, despite trials of a variety of different treatment regimens. Virus expression has been reported to be limited or absent when ATLL is diagnosed, and this has suggested that secondary genetic or epigenetic changes are important in disease pathogenesis. Methods and Findings: We prospectively investigated combination chemotherapy followed by antiretroviral therapy for this disorder. Nineteen patients were prospectively enrolled between 2002 and 2006 at five medical centers in a phase II clinical trial of infusional chemotherapy with etoposide, doxorubicin, and vincristine, daily prednisone, and bolus cyclophosphamide (EPOCH) given for two to six cycles until maximal clinical response, and followed by antiviral therapy with daily zidovudine, lamivudine, and alpha interferon-2a for up to one year. Seven patients were on study for less than one month due to progressive disease or chemotherapy toxicity. Eleven patients achieved an objective response with median duration of response of thirteen months, and two complete remissions. During chemotherapy induction, viral RN

    Unique Responses of Stem Cell-Derived Vascular Endothelial and Mesenchymal Cells to High Levels of Glucose

    Get PDF
    Diabetes leads to complications in selected organ systems, and vascular endothelial cell (EC) dysfunction and loss is the key initiating and perpetuating step in the development of these complications. Experimental and clinical studies have shown that hyperglycemia leads to EC dysfunction in diabetes. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. Whether these vascular stem/progenitor cells succumb to the adverse effects of high glucose remains unknown. We sought to determine whether adult vascular stem/progenitor cells display cellular activation and dysfunction upon exposure to high levels of glucose as seen in diabetic complications. Mononuclear cell fraction was prepared from adult blood and bone marrow. EPCs and MPCs were derived, characterized, and exposed to either normal glucose (5 mmol/L) or high glucose levels (25 mmol/L). We then assayed for cell activity and molecular changes following both acute and chronic exposure to high glucose. Our results show that high levels of glucose do not alter the derivation of either EPCs or MPCs. The adult blood-derived EPCs were also resistant to the effects of glucose in terms of growth. Acute exposure to high glucose levels increased caspase-3 activity in EPCs (1.4x increase) and mature ECs (2.3x increase). Interestingly, MPCs showed a transient reduction in growth upon glucose challenge. Our results also show that glucose skews the differentiation of MPCs towards the adipocyte lineage while suppressing other mesenchymal lineages. In summary, our studies show that EPCs are resistant to the effects of high levels of glucose, even following chronic exposure. The findings further show that hyperglycemia may have detrimental effects on the MPCs, causing reduced growth and altering the differentiation potential

    Procalcitonin and C-Reactive Protein for Invasive Bacterial Pneumonia Diagnosis among Children in Mozambique, a Malaria-Endemic Area

    Get PDF
    Background: Pneumonia is the major cause of mortality and morbidity in children worldwide. Procalcitonin (PCT) and C-reactive protein (CRP) are used in developed countries to differentiate between viral and bacterial causes of pneumonia. Validity of these markers needs to be further explored in Africa. Methodology and Principal Findings: We assessed the utility of PCT and CRP to differentiate viral from invasive bacterial pneumonia in children <5 years hospitalized with clinical severe pneumonia (CSP) in rural Mozambique, a malaria-endemic area with high HIV prevalence. Prognostic capacity of these markers was also evaluated. Out of 835 children with CSP, 87 fulfilled definition of viral pneumonia and 89 of invasive bacterial pneumonia. In absence of malaria parasites, levels of PCT and CRP were lower in the viral group when compared to the invasive bacterial one (PCT: median = 0.21 versus 8.31 ng/ml, p<0.001; CRP: 18.3 vs. 185.35 mg/l, p<0.001). However, in presence of malaria parasites distribution between clinical groups overlapped (PCT: median = 23.1 vs. 21.75 ng/ml, p = 0.825; CRP: median = 96.8 vs. 217.4 mg/l, p = 0.052). None of the two markers could predict mortality. Conclusions: Presence of malaria parasites should be taken into consideration, either for clinical or epidemiological purposes, if using PCT or CRP to differentiate viral from invasive bacterial pneumonia in malaria-endemic areas

    Protocol for Nearly Full-Length Sequencing of HIV-1 RNA from Plasma

    Get PDF
    Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies
    corecore