451 research outputs found

    Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC Blends with TiO2 Nanofillers

    Full text link
    Numerous studies reported on irradiated epoxidized natural rubber/polyvinyl chloride (ENR/PVC) blends and the blends were found miscible at all compositional range thus it offers a broad of opportunity in modifying the blend characteristic. Addition of low loading titanium dioxide (TiO2) nanofillers in the ENR/PVC blends has shown a remarkable increment in tensile strength. Thus, this study was initiated to address the effect of TiO2 nanofillers on ENR/PVC blends dynamic mechanical and gel content properties and its morphology upon exposure to electron beam irradiation. ENR/PVC blends with addition of 0, 2 and 6 phr TiO2 nanofillers were first blended in a mixing chamber before being irradiated by an electron beam accelerator at different 0-200 kGy irradiation doses. The influence of TiO2 nanofillers on the irradiation crosslinking of ENR/PVC blends was study based on the dynamic mechanical analysis which was carried out in determining the glass transition temperature and the storage modulus behavior of ENR/PVC blends incorporated with TiO2 nanofillers. Formations of irradiation crosslinking in the blend were investigated by gel content measurement. While, the TiO2 nanofillers distribution were examined by Transmission Electron Microscope (TEM). Upon irradiation, the ENR/PVC/6 phr TiO2 formed the highest value of gel fraction. For dynamic mechanical analysis, it was found that electron beam radiation increased the Tg of all the compositions. The relationship between the crosslinking and the stiffness of the nanocomposites also can be found in this study. The enhancement in the storage modulus and Tg at higher amount of TiO2 in the blend could be correlated to the enhancement of the irradiation-induced crosslinking in the nanocomposites characteristic and also with the higher agglomerations of TiO2 evidence shown from the TEM micrograph examination. Lastly, the dimensions of TiO2 in the blends were found less than 100 nm in diameter which indicates incorporation of TiO2 nanofillers in ENR/PVC blends is potentially to provide the nanocomposites features. Doi: 10.12777/ijse.6.1.24-30 [How to cite this article: Ramlee, N.A., Ratnam, C.T., Alias, N.H., Rahman, M.F.A.. 2014. Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC blends with TiO2 Nanofillers. International Journal of Science and Engineering, 6(1),24-30. Doi: 10.12777/ijse.6.1.24-30

    Goat-associated Q fever: a new disease in Newfoundland.

    Get PDF
    In the spring of 1999 in rural Newfoundland, abortions in goats were associated with illness in goat workers. An epidemiologic investigation and a serologic survey were conducted in April 1999 to determine the number of infections, nature of illness, and risk factors for infection. Thirty-seven percent of the outbreak cohort had antibody titers to phase II Coxiella burnetii antigen >1:64, suggesting recent infection. The predominant clinical manifestation of Q fever was an acute febrile illness. Independent risk factors for infection included contact with goat placenta, smoking tobacco, and eating cheese made from pasteurized goat milk. This outbreak raises questions about management of such outbreaks, interprovincial sale and movement of domestic ungulates, and the need for discussion between public health practitioners and the dairy industry on control of this highly infectious organism

    A comprehensive exploration on different machine learning techniques for state of charge estimation of EV battery

    Get PDF
    The State of Charge (SoC) is a measurement of the amount of energy available in a battery at a specific interval of time, mostly expressed as percentage. Proportional relationships between the electromotive force of a battery, current, terminal voltage and temperature determine the SoC. There can be a considerable error in the calculations due to a sharp drop of the terminal voltage at the end of discharge. This research has explored how important SoC is, as a factor in Battery Management Systems. The work focuses on using machine learning techniques to obtain an accurate and reliable status of battery charge, this includes Random Forest, Decision Tree, Gradient Boosting, Support Vector Regression, Polynomial Regression and Multilayer Perceptron. In this paper, these techniques are tested and compared with two real world captured datasets of Lithium-ion batteries which includes LG Battery and Unibo Powertools Battery. For supporting this study, statistical methods like K-fold cross validation and Grid Search cross validation techniques are used to estimate the skill of machine learning models. After implementing these techniques, it is found that Random Forest model returns the best Accuracy and Decision Tree returns the least Mean Absolute Error.</p

    Improving compatibility of Recycled Nitrile Rubber (rNBR) and Ethylene Vinyl Acetate (EVA) blends by electron beam irradiation

    Get PDF
    Blends of ethylene vinyl acetate (EVA) copolymer and recycled nitrile rubber (rNBR) were prepared using an internal mixer. N,N’-m-phenylenedimaleimide (HVA-2) was added into the blend composed of 70 wt % of EVA and 30 wt % of rNBR, and served as a crosslinking agent. The HVA-2 concentration was varied from 0 to 5 phr. The changes in the compatibility of the blends were investigated before and after electron beam irradiation by means of physical and morphological tests. The results obtained from these tests were then analysed, namely tensile strength (TS), modulus 100 (M100), elongation at break, gel content and scanning electron microscopy (SEM). The results showed that the TS and elongation at break had decreased with increasing in HVA-2 concentration and electron beam irradiation dose, while the M100 had increased. It is believed that the blends had undergone early crosslinking reaction during mixing. Hence, the brittleness of the materials had increased upon exposure to electron beam irradiation due to the excessive crosslinking bonds. This observation was supported by the gel content and SEM micrographs

    The role of de novo protein synthesis and SIRT1 in ER stress-induced Atf4 and Chop mRNA expression in mammalian cells

    Get PDF
    Endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR) have been implicated in the pathogenesis of many common human diseases. Integral to the UPR and an important determinant in cell fate is the expression of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). This is promoted by activating transcription factor 4 (ATF4) whose expression is rapidly up-regulated in response to ER stress through an eIF2α phosphorylation-dependent increase in protein synthesis. Our data demonstrates that this ER stress-induced increase in ATF4 and CHOP expression is initiated by an increase in Atf4 and Chop mRNA, which is also dependent upon eIF2α phosphorylation. Despite being dependent on eIF2α phosphorylation, we provide evidence that these increases in Atf4 and Chop mRNA expression may occur independently of de novo protein synthesis. Moreover, we show that ER stress-induced Chop mRNA expression is exacerbated by Sirtuin-1 (SIRT1) inhibition indicating that changes in the energy status of the cell may play an important role in its regulation. This work highlights and extends previous findings, and provides important new insights into the mechanism of ER stress-induced expression of Atf4 and Chop mRNA that clearly warrants further investigation

    Effects of electron beam irradiation on properties of corn starch undergone periodate oxidation mechanism blended with polyvinyl alcohol

    Get PDF
    This work was performed to examine the properties of pristine PVOH and PVOH-starch blends under exposure of different irradiation dosages. The periodate oxidation method was used to produce dialdehyde starch. The application of low dosages of electron beam irradiation (=10 kGy) has improved the tensile strength by forming crosslinking networks. However, the tensile strength drastically declined when radiated at 30 kGy due to the reduction of available hydroxyl groups inside polymer matrix for intermolecular interaction. Also, the incorporation of corn starch and dialdehyde starch has significantly reduced the melting temperature and enthalpy of melting of PVOH blends due to cessation of the hydrogen bonding between PVOH and starch molecules. The crystallite size for deflection planes (1 0 1), (1 0 1) and (2 0 0) for all PVOH blends was significant reduced when irradiated. The electron beam irradiation has also weakened the hydrophilic characteristic of all PVOH blends as evidenced in infrared and microscopy analysis

    Astrophysical Constraints on Modifying Gravity at Large Distances

    Get PDF
    Recently, several interesting proposals were made modifying the law of gravity on large scales, within a sensible relativistic formulation. This allows a precise formulation of the idea that such a modification might account for galaxy rotation curves, instead of the usual interpretation of these curves as evidence for dark matter. We here summarize several observational constraints which any such modification must satisfy, and which we believe make more challenging any interpretation of galaxy rotation curves in terms of new gravitational physics.Comment: References added, submitted to Classical & Quantum Gravit

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter
    corecore