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Abstract 

Endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR) 

have been implicated in the pathogenesis of many common human diseases. Integral to the 

UPR and an important determinant in cell fate is the expression of the pro-apoptotic 

transcription factor C/EBP homologous protein (CHOP). This is promoted by activating 

transcription factor 4 (ATF4) whose expression is rapidly up-regulated in response to ER 

stress through an eIF2α phosphorylation-dependent increase in protein synthesis. Our data 

demonstrates that this ER stress-induced increase in ATF4 and CHOP expression is initiated 

by an increase in Atf4 and Chop mRNA, which is also dependent upon eIF2α 

phosphorylation. Despite being dependent on eIF2α phosphorylation, we provide evidence 

that these increases in Atf4 and Chop mRNA expression may occur independently of de novo 

protein synthesis. Moreover, we show that ER stress-induced Chop mRNA expression is 

exacerbated by Sirtuin-1 (SIRT1) inhibition indicating that changes in the energy status of the 

cell may play an important role in its regulation. This work highlights and extends previous 

findings, and provides important new insights into the mechanism of ER stress-induced 

expression of Atf4 and Chop mRNA that clearly warrants further investigation.  

Highlights 

• An increase in Atf4 mRNA is a prerequisite for ER stress-induced ATF4 expression 

• PERK activation is required for ER stress-induced Atf4 and Chop mRNA. 

• eIF2α phosphorylation is required for ER stress-induced Atf4 and Chop mRNA. 

• Increased Atf4 and Chop mRNA expression occur independently of de novo protein 

synthesis 

• SIRT1 represses Chop mRNA expression but enhances Gadd34 and Ero1l expression  
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Introduction 

The endoplasmic reticulum (ER) serves as a site for the synthesis of almost all secreted and 

membrane proteins. Perturbations in ER homeostasis that result in the accumulation of mis-

folded proteins within the ER leads to ‘ER stress’ [1,2]. This is sensed by ER-transmembrane 

proteins whose activation initiates the unfolded protein response (UPR), an adaptive response 

intended to restore ER homeostasis and alleviate ER stress. If ER homeostasis is not restored, 

the UPR switches from a cell protective to a pro-apoptotic program in order to clear the mal-

functioning cell from the organism.  Activating transcription factor 4 (ATF4) ATF4 plays a 

critical role in this as it drives the  transcription of a large number of genes, including that 

encoding the pro-apoptotic protein C/EBP homologous protein (CHOP) also known as DNA 

damage-inducible transcript 3 (DDIT3), an important determinant in cell fate [1,3–6]. 

The UPR is triggered by the activation of ER transmembrane proteins including: PKR-like 

ER kinase (PERK), inositol requiring enzyme 1 (IRE1) and activating transcription factor 6 

(ATF6). When activated PERK phosphorylates the translation initiation factor eIF2 on its 

alpha subunit (eIF2α) resulting in the attenuation of global protein synthesis [7,8]. However, 

it also enhances the rate of protein synthesis from several mRNAs which encode upstream 

open reading frames (uORFs) within their 5’untranslated region (5’UTR), including that 
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encoding activating transcription factor 4 (ATF4) [3,9–11]. This increase in the rate of ATF4 

protein synthesis is often reported and/or generally inferred to be the initiating step in the up-

regulation of ATF4 expression. However, ER stress also promotes an increase in Atf4 mRNA 

expression [3,10,12]. The mechanism by which ER stress induces an increase in ATF4 

mRNA is poorly understood. Although it is significantly reduced in both eIF2α S51A knock-

in mouse embryonic fibroblasts (MEF) or PERK knock-out MEF [9,13–15].  

In this report we investigate the role of transcription in ER stress-induced ATF4 and CHOP 

expression in mammalian cells and endeavour to gain mechanistic insights into how ER 

stress promotes increased Atf4 and Chop mRNA expression. 

 

Methods 

 

General Reagents and Materials. GSK2606414 and thapsigargin were purchased from 

Merck. 4µ8C and EX527 were purchased from Tocris Bioscience. All other chemicals and 

reagents were purchase from Fisher Scientific, Sigma-Aldrich or VWR unless otherwise 

specified.  

Cell Culture. Wild type and PERK knock out mouse embryonic fibroblasts (MEF) [13] were 

cultured in DMEM media containing 25mM glucose supplemented with 10% heat-inactivated 

FBS, 100μg/ml streptomycin, 100units/ml penicillin, 100units/ml neomycin and maintained 

at 37oC and 5% CO2. Mouse Insulinoma 6 (MIN6) cells [16] were used between passages 

25 and 35 at ~80% confluence and cultured as previously described [17].  

 

SDS-Polyacrylamide Gel Electrophoresis and Immunohistochemistry. SDS-PAGE and 

western blotting were performed as previously described [18] using antibodies to: BiP (BD 

Transduction Laboratories, USA), phospho-IRE1α (Ser 724; Abcam, USA), phospho-PERK 
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(Thr 980), phospho-eIF2α (Ser 51), phospho-c-jun (Ser 63), CHOP, ATF4, rpS6 and GAPDH 

(Cell Signaling Technology, USA). Immuno-labeled bands were quantified by densitometry 

(Image Lab, Bio-Rad Inc., USA).  

  

RNA isolation and qPCR analyses Total RNA was extracted from tissue using the 

ReliaPrep™ RNA Cell Miniprep System (Promega, USA) according to manufacturer’s 

instructions. Reverse transcription was carried out using 0.2 μg of RNA using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, UK). Quantitative PCR was 

carried out using the SYBR® Green PCR Master Mix (Applied Biosystems, UK). The gene 

expression from each sample was either analysed in duplicate or triplicate and normalized 

against 18S ribosomal RNA. All reactions were performed on the Rotor-Gene Q (Qiagen, 

USA) using cycling conditions recommended by the manufacturer. The results are expressed 

as relative gene expression using the ΔCt method [19]. 

 

Infection of cell lines with recombinant adenoviruses. Adenovirus expressing GADD34ΔN 

were generated as previously described [17]. Prior to experimentation, cells were transduced 

by incubation for 96h with high titre virus. Adenoviruses transduction efficiency was 

determined by monitoring GFP expression using a Nikon fluorescence microscope fitted with 

a mercury lamp.  

 

Statistical analysis Data are expressed as mean ± SEM. Unless otherwise stated data were 

analysed by one-way ANOVA followed by Tukey’s post-hoc test for multiple comparison 

between means using Prism 6 (GraphPad Software, USA).  

 

Results 
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ER stress-induced Atf4 and Chop mRNA expression precedes an increase in ATF4 and 

CHOP protein expression. To investigate the temporal relationship between changes in ER 

stress-induced Atf4 and Chop mRNA expression and ATF4 and CHOP protein expression, 

mouse embryonic fibroblasts (MEF) were treated with thapsigargin, a classic 

pharmacological inducer of ER stress, for up to 6h (Figure 1). Induction of ER stress and the 

activation of the UPR were determined by measuring changes in the phosphorylation status 

of PERK, IRE1 and eIF2α by Western blot analysis (Figure 1a). Changes in ATF4 and CHOP 

protein and mRNA expression were determined by Western blot and qPCR analysis 

respectively (Figure 1). Thapsigargin treatment led to a rapid increase (within 15 minutes) in 

the phosphorylation of IRE1, PERK and its downstream target, eIF2α (Figure 1a). Increased 

ATF4 protein expression was detected after 1h, whereas CHOP protein expression was 

detected after 2h (Figure 1a). The expression of Atf4 mRNA was detected after 30 min of 

treatment whereas an increase in Chop mRNA was detected after 1h (Figure 1b). Therefore, 

in response to ER stress, an increase in Atf4 and Chop mRNA expression precedes an 

increase in ATF4 and CHOP protein expression. Moreover, an increase in ATF4 expression 

precedes an increase in the expression of CHOP. 

 

Active transcription is required for ER stress-induced increased ATF4 protein expression. 

To determine whether ER stress-induced Atf4 mRNA expression is a prerequisite for the 

rapid increase in ATF4 protein, MEFs and the pancreatic beta-cell line MIN6 were treated 

with thapsigargin in the presence or absence of the transcriptional inhibitor actinomycin-D 

for the times indicated (Figure 2). In both MEFs and MIN6 cells thapsigargin lead to a robust 

and rapid increase in both Atf4 mRNA and protein expression as determined using qPCR and 

Western blot analysis (Figure 2). Chop mRNA expression also increased rapidly in response 

to ER stress (Figure 2b and d). As expected actinomycin-D inhibited ER stress-induced 
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increases in Atf4 and Chop mRNA (Figures 2b and d). Importantly, actinomycin-D also 

inhibited ER stress-induced increase in ATF4 and CHOP protein expression (Figures 2a and 

c). Of note, actinomycin-D increased eIF2α phosphorylation in both MEFs and MIN6 cells 

yet no increase in ATF4 protein expression was detected (Figure 2a and c). Therefore, based 

on these results, Atf4 mRNA transcription is a prerequisite for ER stress-induced increases in 

ATF4 protein expression in both MIN6 cells and MEFs and that eIF2α phosphorylation alone 

is insufficient to promote ATF4 protein expression in the absence of an increase in ATF4 

mRNA. This conclusion is supported by previous findings showing that actinomycin D 

inhibits ER stress-induced ATF4 protein expression in MEFs [3,20].  

PERK is required for ER stress-induced Atf4 and Chop mRNA expression. To investigate 

how ER stress stimulates an increase in ATF4 transcription, MEFs were treated with 

thapsigargin for 2 or 6 h in the presence or absence of either an inhibitor of PERK 

(GSK2606414) or IRE1 (4µ8C) (Figure 3a). As anticipated, thapsigargin-induced expression 

of both ATF4 and CHOP were inhibited by GSK2606414. Importantly, GSK2606414 also 

inhibited or significantly reduced ER stress-induced increases in Atf4 and Chop mRNA 

expression. In contrast, the inhibition of IRE1 had no significant effect on either Atf4 or Chop 

mRNA or protein expression.  

To investigate the critical role of PERK in Atf4 and Chop transcription in an alternative cell 

type, MIN6 cells were also treated with thapsigargin for 2 and 6 h in the presence or absence 

of GSK2606414 (Figure 3b). Thapsigargin caused an increase in PERK and eIF2α 

phosphorylation as well as an increase in the expression of CHOP and ATF4 protein which 

was co-incident with an increase in both Atf4 and Chop mRNA expression (Figure 3b). In the 

presence of GSK2606414, thapsigargin-induced increases in eIF2α phosphorylation was 

significantly reduced at 2h but not by 6h indicating that in these cells there may be a 

compensatory increase in the activity of  another eIF2α kinase, most likely PKR [21]. Despite 
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this both and ATF4 and CHOP protein expression was ablated at both 2 and 6h (Figure 3b). 

Importantly, as observed in MEFs, GSK2606414 also inhibited thapsigargin-induced 

increases in both Atf4 and Chop mRNA expression (Figure 3b). 

To confirm the role of PERK in ER stressed-induced Atf4 and Chop mRNA expression we 

compared changes in the expression of Atf4 and Chop mRNA and protein in response to 

thapsigargin in wild-type (WT) versus PERK ‘knock-out’ MEFs (PERK-/-) (Figure 4).  

Thapsigargin caused an increase in the expression of both Atf4 and Chop mRNA and protein 

in WT MEF but not in PERK-/- cells (Figure 4a and b).  

Taken together, these results provide strong evidence that PERK activation is required for ER 

stress-induced increases in Atf4 and Chop mRNA expression in mammalian cells.  

 

eIF2α phosphorylation is required for increased Atf4 and Chop mRNA expression. There 

has been some contradictory findings regarding the role of eIF2α in ER stress-induced ATF4 

expression using eIF2α ser51ala knock in MEFs [9,15]. To reinvestigate the role of eIF2α 

phosphorylation in the up-regulation of Atf4 and Chop mRNA expression using an alternative 

approach, MEFs were transduced with adenovirus expressing an N-terminal deletion mutant 

of GADD34 (GADD34∆N), which directs protein phosphatase 1 to eIF2α resulting in its 

constitutive de-phosphorylation [14,22]. Cells were then treated with thapsigargin to induce 

ER stress and effects on eIF2α phosphorylation and Atf4 and Chop mRNA expression 

determined (Figure 5). As anticipated, thapsigargin increased eIF2α phosphorylation and Atf4 

and Chop mRNA and protein expression. Importantly, in cells expressing GADD34∆N 

thapsigargin-induced eIF2α phosphorylation and ATF4 and CHOP protein and mRNA 

expression were effectively blocked. Therefore, in MEFs increased Atf4 and Chop mRNA 

expression in response to ER stress are dependent upon eIF2α phosphorylation.  
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The role of de-novo protein synthesis in ER stress-induced increases in Atf4 and Chop 

mRNA expression. As eIF2α phosphorylation is required for increased Atf4 mRNA 

expression (Figures 3, 4 and 5) and the only known role for eIF2α phosphorylation is in 

regulating protein synthesis, we figured that eIF2α phosphorylation likely impacts on Atf4 

mRNA expression by increasing the protein synthesis of a yet unidentified transcription 

factor. To investigate this possibility we treated MEFs with thapsigargin in the presence or 

absence of cycloheximide, an inhibitor of protein synthesis (Figure 6). Thapsigargin caused 

the phosphorylation of eIF2α and an increase in ATF4 and CHOP mRNA and protein 

expression (Figure 6a). As anticipated, in the presence of cycloheximide, the synthesis of 

ATF4 and CHOP was inhibited (Figure 6a). Surprisingly, in the presence of cycloheximide, 

thapsigargin was still able to promote an increase in Atf4 and Chop mRNA expression 

(Figure 6b). These novel results demonstrate that an increase in Atf4 and Chop transcription 

can occur independently of de novo protein synthesis and that an increase in ER stress-

induced Chop mRNA can occur independently of ATF4. However, cycloheximide alone 

promoted an increase in eIF2α phosphorylation as well as an increase in Atf4 and Chop 

mRNA expression (Figure 6b). Whether these increases were mediated by an eIF2α-

dependent mechanism akin to what happens in ER stress is unknown. To investigate this, 

MEFs or MEFs transduced with adenovirus expressing GADD34∆N were treated with 

thapsigargin, cycloheximide or cycloheximide and thapsigargin and the effects on Atf4 and 

Chop mRNA expression investigated (Figure 6c). As previously shown, thapsigargin-induced 

Atf4 and Chop mRNA expression was inhibited in GADD34∆N expressing cells. However, 

cycloheximide or cycloheximide plus thapsigargin-induced Atf4 mRNA expression was only 

partially inhibited in GADD34∆C expressing cells, indicating that an increase in Atf4 mRNA 

transcription can occur independently of eIF2α phosphorylation and that cycloheximide 
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promotes an increase in Atf4 transcription via a mechanism distinct from ER stress induced 

Atf4 expression. In contrast, cycloheximide-induced Chop mRNA expression in the presence 

or absence of thapsigargin was inhibited in the presence of GADD34∆N indicating that eIF2α 

phosphorylation is required for Chop mRNA expression but that de novo protein synthesis is 

not. It should be noted that the expression of 18S RNA was unaffected by either thapsigargin 

or cycloheximide treatment over the time course of these experiments (results not shown). 

Role of SIRT1 in Atf4 and Chop mRNA expression. Protein synthesis is a major consumer 

of energy and thus the inhibition of protein synthesis by phosphorylating eIF2α will cause a 

change in the energy status of the cell. Thus it is possible that eIF2α phosphorylation 

increases Atf4 and Chop mRNA transcription by indirectly changing the activity of an 

intracellular energy sensor. Sirtuin 1 (SIRT1) is a highly conserved mammalian NAD+-

dependent protein deacetylase which regulates gene expression and is inactivated in response 

to an increase in energy status [23]. Therefore, we reasoned whether increased Atf4 or Chop 

mRNA expression were mediated by the inactivation of SIRT1. To investigate this, MEFs 

were treated with thapsigargin in the presence or absence of EX527 and sirtinol, selective 

inhibitors  of SIRT1 and 2 (Figure 7) (n.b.EX527 has IC50 values are 0.1–1 and 20–33 µM 

whereas sirtinol has  IC50 values of 37.6–131 38–58 for  SIRT1 and SIRT2  respectively 

[24]). As a control, the levels of acetylation in whole cell extracts was also determined using 

an anti-acetyl lysine antibody (Figure 7a and b). As anticipated, EX527 and sirtinol promoted 

increased acetylation demonstrating their effectiveness. However, thapsigargin had no global 

effect on acetylation (Figure 7a and b). EX527 or sirtinol had no effect on thapsigargin-

induced ATF4 protein expression  (Figure 7a and b).  However, thapsigargin induced Chop 

mRNA expression was significantly increased in the presence of these inhibitors (Figure 7c 

and d) or in the presence of an alternative SIRT1 inhibitor suramin (IC50 0.3–2.6 and  1.1–20 

μM for SIRT 1 and SIRT2 respectively [24]) (Figure 7d). Thus SIRT may act as a repressor 
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of ER stress-induced Chop mRNA expression. To investigate whether these inhibitors 

affected the mRNA expression of other ER stress markers, changes in Atf4, Bip Gadd34, and 

Ero1l mRNA were also quantified. None of the inhibitors affected ER stress-induced Bip or 

Atf4 mRNA expression (Figure 7c, d and e) but interestingly EX527 and suramin 

significantly inhibited Gadd34 and Ero1l mRNA expression. As these inhibitors are more 

specific for SIRT1 it is likely that these effects are mediated through the inhibition of SIRT1 

rather than SIRT2. 

Discussion 

The classical and often cited mechanism by which ER stress increases ATF4 expression is 

through an increase in the rate of ATF4 translation mediated by the PERK-dependent 

phosphorylation of eIF2α. What is often overlooked is the role of Atf4 mRNA transcription. 

Our results show that ER stress induced increases in Atf4 mRNA transcription is a 

prerequisite for increased ATF4 protein expression. Moreover, we show that this increase in 

Atf4 mRNA is dependent upon both PERK activation and eIF2α phosphorylation. These 

results confirm and extend previous findings [3,15,20,25]. The only known role of eIF2α is in 

regulating protein synthesis and therefore the most plausible explanation for the role of eIF2α 

phosphorylation in Atf4 mRNA transcription is that it promotes a rapid increase in the 

synthesis of a yet unidentified transcription factor or factors that stimulates an increase in 

ATF4 transcription. This factor is unlikely to be ATF4 as overexpression of ATF4 is unable 

to induce ATF4 expression and ATF4 does not bind to the ATF4 promoter based on genome-

wide chromatin immunoprecipitation and RNA sequencing analysis [26]. However, we show 

that ER stress induced Atf4 mRNA expression is increased in the presence of cycloheximide, 

indicating that increased transcription of ATF4 can occur independently of de novo protein 

synthesis. However, given the effects of cycloheximide alone on Atf4 mRNA expression, it is 
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difficult to confirm that ER stress-induced Atf4 mRNA expression also occurs independently 

of de novo protein synthesis.  

We also show that Chop mRNA expression is dependent upon PERK activation and eIF2α 

phosphorylation, thus supporting and extending previous findings [15,20]. As ATF4 acts as a 

transcriptional activator of CHOP, and ATF4 expression requires PERK/eIF2α 

phosphorylation, the most plausible explanation for the effect of PERK inhibition or the 

forced dephosphorylation of eIF2α on Chop mRNA expression is through the inhibition of 

ATF4 protein expression. However, Chop mRNA expression is increased in the presence of 

cycloheximide or thapsigargin plus cycloheximide demonstrating that, at least under these 

conditions, ATF4 is not a prerequisite for increased Chop mRNA expression. As 

cycloheximide promotes an increase in eIF2α phosphorylation and inhibition of eIF2α 

phosphorylation represses cycloheximide-induced Chop mRNA expression, it seems likely 

that cycloheximide and ER stress-induced Chop mRNA induction is mediated by similar 

mechanisms. This supports the idea that cycloheximide and ER stress-induced Chop mRNA 

expression does not require de novo protein synthesis despite requiring eIF2α 

phosphorylation.  

Protein synthesis is a major energy consuming process. Thus inhibition of protein synthesis, 

either by phosphorylating eIF2α or through the use of protein synthesis inhibitors, can lead to 

a rise in the energy status of the cell. Therefore it is possible that cycloheximide or agents that 

induce eIF2α phosphorylation increase Atf4 and Chop mRNA transcription via a signalling 

pathway that senses the intracellular energy status of the cell. SIRT1, an NAD+-dependent 

protein deacetylase which modulates gene expression, is inactivated with increased energy 

status [23]. Interestingly, SIRT inhibition by three distinct SIRT inhibitors, EX527, sirtinol 

and suramin, promotes thapsigargin-induced expression of Chop mRNA indicating that 

acetylation represses Chop mRNA transcription. In contrast, thapsigargin induced expression 
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of EroR1 and Gadd34 mRNAs were strongly inhibited by EX527 and suramin but not by 

Sirtinol. This likely reflects the selectivity of these SIRT inhibitors for particular SIRT 

isoform. EX527 and suramin having a higher affinity for SIRT1 than SIRT2 [24]. Therefore, 

SIRT1 activation may promote Ero1l and GADD34 expression. There is evidence that SIRT1 

can protect cells from ER stress [27]. Therefore it is possible that this protective effect is 

mediated, at least in part, by a repression of CHOP transcription and an increase in Gadd34.  

In summary, this work highlights the fact that ER stress-induced transcription of Atf4 and 

Chop requires PERK activation and eIF2α phosphorylation and that this increase in mRNA is 

a prerequisite for increased ATF4 and CHOP protein expression. We also present evidence 

that an increase in Atf4 and Chop mRNA can occur independently of de novo synthesis.  

However, the mechanism by which this occurs is unknown. Further investigation is clearly 

warranted as this initiating step in the UPR may be an important pharmacological target for 

modulating ER stress. 
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Figures legends 

 

Figure 1. ER stress-induced Atf4 and Chop mRNA expression precedes an increase in 

ATF4 and CHOP protein expression. MEF were treated for up to 6 hours in the presence of 

thapsigargin (Tg 1µM). (a) Protein samples were resolved by SDS-PAGE and Western 

blotted using ATF4, CHOP and the phosphorylated form of PERK (p-PERK) and eIF2α (p-

eIF2α). GAPDH was used as a loading control. Representative blots are shown and 

densitometric analyses of ATF4 and CHOP are presented below. (b) Total RNA was isolated 

for qPCR analyses and the expression of Atf4 and Chop were determined. The results are 

expressed as mean +/- S.E.M of at least three independent experiments. * p<0.05, ** p<0.01 

vs time zero. 

Figure 2. Active transcription is required for ER stress-induced increased ATF4 protein 

expression.  MEF (a and b) and MIN6 (c and d) cells were treated with thapsigargin (1μM) 

in the presence or absence of actinomycin D (ActD) for 2h or 6h. (a and c) Changes in ATF4, 

P-eIF2α and CHOP were determined by Western Blot analysis. GAPDH was used as a 

loading control. Representative blots are shown and densitometric analyses of ATF4 is 

presented below. (b and d) Changes in the expression of Atf4 and Chop mRNA were 

determined by qPCR analysis.  The results are expressed as mean +/- S.E.M of at least three  

independent experiments. * p<0.05, ** p<0.01vs time zero; ††  p<0.01 between the relevant 

groups. 

Figure 3. Inhibition of PERK prevents ER stress-induced Atf4 and Chop mRNA 

expression. (a) MEF cells were treated with thapsigargin (Th, 1μM) in the presence or 
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absence of vehicle (DMSO), 0.5μM GSK2606414 (PERK inhibitor = PERKi) or 30 μM 

4μ8C (IRE1 inhibitor = IRE1i) for 2h or 6h. Protein samples were resolved by SDS-PAGE 

and Western blotted using ATF4, CHOP and the phosphorylated form of PERK (p-PERK) 

and eIF2α (p-eIF2α). GAPDH was used as a loading control. Representative blots for and the 

corresponding densitometric analyses are shown. Total RNA was isolated for qPCR analyses 

and the expression of Atf4 and Chop were determined. The results are expressed as mean +/- 

S.E.M of at least three independent experiments. * p<0.05, ** p<0.01 vs control; † p<0.05, 

†† p<0.01 for the compared groups. (b) MIN6 cells were treated with thapsigargin (Th, 1μM) 

in the presence or absence of vehicle (DMSO) or 0.5μM GSK2606414 (PERK inhibitor = 

PERKi) for 2h or 6h. Protein samples were resolved by SDS-PAGE and Western blotted 

using ATF4, CHOP and the phosphorylated form of PERK (p-PERK) IRE1 (p-IRE1) and 

eIF2α (p-eIF2α). GAPDH was used as a loading control. Representative blots and the 

corresponding densitometric analyses are shown. Total RNA was isolated for qPCR analyses 

and the expression of Atf4 and Chop were determined. The results are expressed as mean +/- 

S.E.M of at least three independent experiments. * p<0.05, ** p<0.01 vs control; †† p<0.01 

for the compared groups. 

 

Figure 4. PERK is required for ER stress-induced Atf4 and Chop mRNA 

expression.MEF wildtype and PERK -/- cells were incubated in presence of 1µM 

thapsigargin for 0, 2, 6, 12 and 24 hours. (a) Protein samples were resolved by SDS-PAGE 

and Western blotted using ATF4, CHOP and the phosphorylated form of eIF2α (p-eIF2α). 

rpS6 was used as a loading control. Representative blots and the corresponding densitometric 

analyses are shown below. (b) Total RNA was isolated for qPCR analyses and the expression 

of Atf4 and Chop were determined. All results are expressed as mean +/- S.E.M of at least 
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three independent experiments. Unless otherwise indicated, * p<0.05, ** p<0.01 vs control; † 

p<0.05, †† p<0.01 for the compared groups. 

 

Figure 5. ER stress induced ATF4 and CHOP induction is dependent on PERK-eIF2α 

activation in MEF cells. MEFs mock infected or infected with adenovirus expressing 

GADD34∆N were incubated in the absence or presence of 1µM thapsigargin for 2h. Cell 

lysate were analysed by western blot and probe for antibodies against P-eIF2α, ATF4, CHOP 

and GAPDH was used as a loading control. Total RNA was isolated for qPCR analyses and 

the expression of Atf4 and Chop were determined. The results are expressed as mean +/- 

S.E.M of at least three independent experiments. * p<0.05, ** p<0.01 vs control; † p<0.05, 

†† p<0.01 for the compared groups.  

 

Figure 6. Role of de-novo protein synthesis in stress induced increases in Atf4 and Chop 

mRNA. MEF was treated with cycloheximide (CHX or X, 50µg/ml) for 2 or 6 hours in the 

presence or absence of thapsigargin (Thaps or T 1µM). (a) Protein samples were resolved by 

SDS-PAGE and Western blotted using antibodies against ATF4, CHOP and the 

phosphorylated form of PERK (P-PERK), eIF2α (P-eIF2α) and P-c-Jun. GAPDH was used as 

a loading control. Representative blots are shown and densitometric analyses of ATF4, 

CHOP and eIF2α are presented below. (b) Total RNA was isolated for qPCR analyses and 

the expression of Atf4 and Chop were determined. (c) Wildtype and adeno-virus transduced 

GADD34 constitutively active MEF cells were exposed to cycloheximide in the absence or 

presence of 1µM thapsigargin for 6h. Total RNA was isolated for qPCR analyses and the 

expression of Atf4 and Chop were determined. The results are expressed as mean +/- S.E.M 
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of at least three experiments. * p<0.05, ** p<0.01 vs control; †† p<0.01 for the compared 

groups. 

 

Figure 7. Role of SIRT1 in Atf4 and Chop mRNA expression. MEF was exposed to 

EX527 (SIRT1i, 10µM) (a and c) or sirtinol (20 or 100µM as indicated) (b and d) or suramin 

(2µM) (e) for 6 hours in the presence or absence of thapsigargin (Thaps, 1µM). (a and b) 

Protein samples were resolved by SDS-PAGE and Western blotted using antibodies against 

BiP, ATF4, CHOP, pan-acetylated lysine and the phosphorylated form of PERK (p-PERK), 

IRE1α (P-IRE1α) and eIF2α (P-eIF2α). GAPDH was used as a loading control. 

Representative blots are shown. (c, d and e) Total RNA was isolated for qPCR analyses and 

the expression of Atf4, Chop, BiP, Ero1l and Gadd34 were determined. The results are 

expressed as mean +/- S.E.M of three to four independent experiments. ** p<0.01 vs control; 

†† p<0.01 for the compared groups.  
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