129 research outputs found

    Oncogenic Potential of Hepatitis C Virus Proteins

    Get PDF
    Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today

    MicroRNAs: Role in hepatitis C virus pathogenesis

    Get PDF
    AbstractHepatitis C virus (HCV) is a global health burden with an estimated 170–200 million peoples chronically infected worldwide. HCV infection remains as an independent risk factor for chronic hepatitis, liver cirrhosis, hepatocellular carcinoma, and a major reason for liver transplantation. Discovery of direct acting antiviral (DAA) drugs have shown promising results with more than 90% success rate in clearing the HCV RNA in patients, although long-term consequences remain to be evaluated. microRNAs (miRNAs) are important players in establishment of HCV infection and target crucial host cellular factors needed for productive HCV replication and augmented cell growth. Altered expression of miRNAs is involved in the pathogenesis associated with HCV infection by controlling signaling pathways such as immune response, proliferation and apoptosis. miRNA is emerging as a means of communication between various cell types inside the liver. There is likely possibility of developing circulating miRNAs as biomarkers of disease progression and can also serve as diagnostic tool with potential of early therapeutic intervention in HCV associated end stage liver disease. This review focuses on recent studies highlighting the contribution of miRNAs in HCV life cycle and their coordinated regulation in HCV mediated liver disease progression

    MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells.

    Get PDF
    c-myc promoter binding protein (MBP-1) is a multi-functional protein known to regulate expression of targets involved in the malignant phenotype. We have previously demonstrated that exogenous expression of MBP-1 inhibits prostate tumor growth, although the mechanism of growth inhibition is not well understood. We hypothesized that MBP-1 may modulate microRNA (miRNA) expression for regulation of prostate cancer cell growth. In this study, we demonstrated that exogenous MBP-1 upregulates miR-29b by 5-9 fold in prostate cancer cells as measured by real-time quantitative reverse transcription-PCR. Subsequent studies indicated that exogenous expression of miR-29b inhibited Mcl-1, COL1A1, and COL4A1. Further, a novel target with potential implications for invasion and metastasis, matrix metallopeptidase-2 (MMP-2), was identified and confirmed to be a miR-29b target in prostate cancer cells. Together our results demonstrated that exogenous expression of miR-29b regulates prostate cancer cell growth by modulating anti-apoptotic and pro-metastatic matrix molecules, implicating therapeutic potential of miR-29b for prostate cancer inhibition

    Knockdown of MBP-1 in Human Foreskin Fibroblasts Induces p53-p21 Dependent Senescence

    Get PDF
    MBP-1 acts as a general transcriptional repressor. Overexpression of MBP-1 induces cell death in a number of cancer cells and regresses tumor growth. However, the function of endogenous MBP-1 in normal cell growth regulation remains unknown. To unravel the role of endogenous MBP-1, we knocked down MBP-1 expression in primary human foreskin fibroblasts (HFF) by RNA interference. Knockdown of MBP-1 in HFF (HFF-MBPsi-4) resulted in an induction of premature senescence, displayed flattened cell morphology, and increased senescence-associated beta-galactosidase activity. FACS analysis of HFF-MBPsi-4 revealed accumulation of a high number of cells in the G1-phase. A significant upregulation of cyclin D1 and reduction of cyclin A was detected in HFF-MBPsi-4 as compared to control HFF. Senescent fibroblasts exhibited enhanced expression of phosphorylated and acetylated p53, and cyclin-dependent kinase inhibitor, p21. Further analysis suggested that promyolocytic leukemia protein (PML) bodies are dramatically increased in HFF-MBPsi-4. Together, these results demonstrated that knockdown of endogenous MBP-1 is involved in cellular senescence of HFF through p53-p21 pathway

    Identification and Characterization of MicroRNAs in Normal Equine Tissues by Next Generation Sequencing

    Get PDF
    The role of microRNAs (miRNAs) as a post-transcriptional gene regulator has been elucidated in a broad range of organisms including domestic animals. Characterization of miRNAs in normal tissues is an important step to investigate the functions of miRNAs in various physiological and pathological conditions. Using Illumina Next Generation Sequencing (NGS) technology, we identified a total of 292 known and 329 novel miRNAs in normal horse tissues including skeletal muscle, colon and liver. Distinct sets of miRNAs were differentially expressed in a tissue-specific manner. The miRNA genes were distributed across all the chromosomes except chromosomes 29 and 31 in the horse reference genome. In some chromosomes, multiple miRNAs were clustered and considered to be polycistronic transcript. A base composition analysis showed that equine miRNAs had a higher frequency of A+U than G+C. Furthermore, U tended to be more frequent at the 59 end of miRNA sequences. This is the first experimental study that identifies and characterizes the global miRNA expression profile in normal horse tissues. The present study enriches the horse miRNA database and provides useful information for further research dissecting biological functions of miRNAs in horse.open2

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Strategies to Circumvent Host Innate Immune Response by Hepatitis C Virus

    No full text
    Innate immune responses generate interferons, proinflammatory cytokines, complement activation, and natural killer (NK) cell response. Ultimately, this leads to the induction of a robust virus-specific adaptive immunity. Although the host innate immune system senses and responds to eliminate virus infection, hepatitis C virus (HCV) evades immune attack and establishes persistent infection within the liver. Spontaneous clearance of HCV infection is associated with a prompt induction of innate immunity generated in an infected host. In this review, we have highlighted the current knowledge of our understanding of host–HCV interactions, especially for endogenous interferon production, proinflammatory response, NK cell response, and complement activation, which may impair the generation of a strong adaptive immune response for establishment of chronicity. The information may provide novel strategies in augmenting therapeutic intervention against HCV

    Diverse roles of bitter melon (Momordica charantia) in prevention of oral cancer

    No full text
    Oral squamous cell carcinoma (OSCC) is one of the common lethal malignancies which is increasing rapidly in the world. Increasing risks from alcohol and tobacco habits, lack of early detection markers, lack of effective chemotherapeutic agents, recurrence and distant metastasis make the disease more complicated to manage. Laboratory-based studies and epidemiological studies indicate important roles of nutraceuticals to manage different cancers. The plant bitter melon (Momordica charantia) is a good source of nutrients and bio-active phytochemicals such as triterpenoids, triterpene glycosides, phenolic acids, flavonoids, lectins, sterols and proteins. The plant is widely grown in Asia, Africa, and South America. Bitter melon has traditionally been used as a folk medicine and Ayurvedic medicine in Asian culture to treat diseases such as diabetes, since ancient times. The crude extract and some of the isolated pure compounds of bitter melon show potential anticancer effects against different cancers. In this review, we shed light on its effect on OSCC. Bitter melon extract has been found to inhibit cell proliferation and metabolism, induce cell death and enhance the immune defense system in the prevention of OSCC in vitro and in vivo. Thus, bitter melon may be used as an attractive chemopreventive agent in progression towards OSCC clinical study
    corecore