13 research outputs found

    Susceptibility to Seismic Amplification and Earthquake Probability Estimation Using Recurrent Neural Network (RNN) Model in Odisha, India

    No full text
    The eastern region of India, including the coastal state of Odisha, is a moderately seismic-prone area under seismic zones II and III. However, no major studies have been conducted on earthquake probability (EPA) and hazard assessment (EHA) in Odisha. This paper had two main objectives: (1) to assess the susceptibility of seismic wave amplification (SSA) and (2) to estimate EPA in Odisha. In total, 12 indicators were employed to assess the SSA and EPA. Firstly, using the historical earthquake catalog, the peak ground acceleration (PGA) and intensity variation was observed for the Indian subcontinent. We identified high amplitude and frequency locations for estimated PGA and the periodograms were plotted. Secondly, several indicators such as slope, elevation, curvature, and amplification values of rocks were used to generate SSA using predefined weights of layers. Thirdly, 10 indicators were implemented in a developed recurrent neural network (RNN) model to create an earthquake probability map (EPM). According to the results, recent to quaternary unconsolidated sedimentary rocks and alluvial deposits have great potential to amplify earthquake intensity and consequently lead to acute ground motion. High intensity was observed in coastal and central parts of the state. Complicated morphometric structures along with high intensity variation could be other parameters that influence deposits in the Mahanadi River and its delta with high potential. The RNN model was employed to create a probability map (EPM) for the state. Results show that the Mahanadi basin has dominant structural control on earthquakes that could be found in the western parts of the state. Major faults were pointed towards a direction of WNW–ESE, NE–SW, and NNW–SSE, which may lead to isoseismic patterns. Results also show that the western part is highly probable for events while the eastern coastal part is highly susceptible to seismic amplification. The RNN model achieved an accuracy of 0.94, precision (0.94), recall (0.97), F1 score (0.96), critical success index (CSI) (0.92), and a Fowlkes–Mallows index (FM) (0.95)

    Development of semi-quantitative earthquake risk assessment models using machine learning, multi-criteria decision-making, and GIS

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Catastrophic natural hazards, such as earthquakes, pose serious threats to properties and human lives in urban areas. Earthquake risk assessment (ERA) is specifically required for areas with complicated tectonics because of the catastrophic nature of mega-events that result in a massive death toll. Therefore, ERA is indispensable in disaster management. The prerequisite for earthquake risk estimation is probability, hazard and vulnerability assessment. Several research gaps such as failure to establish comprehensive GIS-based models, few works on small scale ERA using integrated GIS techniques, use of limited conditioning factors, and little research on optimization of factors are specified in literature. Therefore, this study aims to develop models and estimate risk in city scale that is necessary to reduce future fatalities. The study evaluates the earthquake vulnerability by using the multi-criteria decision-making approach through a novel integrated analytical hierarchy process (AHP) and VIseKriterijumska Optimizacija I Kompromisno Resenje method using a geographical information system in the first objective. This research develops an integrated model by using the artificial neural network– AHP for constructing the ERA map in the second objective. The third objective presents a novel combination of artificial neural network cross-validation (fourfold ANN-CV) with a hybrid analytic hierarchy process-Technique for Order of Preference by Similarity to Ideal Solution (AHP-TOPSIS) method to improve the ERA and applied to Aceh, Indonesia. The proposed models are transferable to other regions by localizing the input parameters that contribute to earthquake risk mitigation and prevention planning. The results obtained from this research have important implications for future large-scale risk assessment, land use planning and hazard mitigation

    Urban tree classification using discrete-return LiDAR and an object-level local binary pattern algorithm

    No full text
    Urban trees have the potential to mitigate some of the harm brought about by rapid urbanization and population growth, as well as serious environmental degradation (e.g. soil erosion, carbon pollution and species extirpation), in cities. This paper presents a novel urban tree extraction modelling approach that uses discrete laser scanning point clouds and object-based textural analysis to (1) develop a model characterised by four sub-models, including (a) height-based split segmentation, (b) feature extraction, (c) texture analysis and (d) classification, and (2) apply this model to classify urban trees. The canopy height model is integrated with the object-level local binary pattern algorithm (LBP) to achieve high classification accuracy. The results of each sub-model reveal that the classification of urban trees based on the height at 47.14 (high) and 2.12 m (low), respectively, while based on crown widths were highest and lowest at 22.5 and 2.55 m, respectively. Results also indicate that the proposed algorithm of urban tree modelling is effective for practical use

    Sand dune risk assessment in Sabha region, Libya using Landsat 8, MODIS, and Google Earth Engine images

    No full text
    Globally, sand dunes are a major environmental problem that causes damage to urban areas, transportation, and population. The current study proposes a comprehensive investigation on sand dune risk modeling in Sabha located in the southwestern part of Libya. Data from various sources were collected and prepared in a GIS database. Data from 2016 were used to derive several controlling factors, such as altitude, rainfall, soil texture, wind direction and speed, land cover, and population density. Next, sand dune susceptibility, hazard and vulnerability assessments were performed. Finally, a risk map was produced. Results indicate that land use and soil are the most influential factors affecting the sand dunes in the study area, whereas rainfall is the least significant factor. Results indicate that, southern part has a higher chance of sand dune occurrence than the northern part, whereas the highest risk zone is located in the middle part, where the urban and agricultural lands are present. More than 200 km2 of the study area are under high and very high risk zones. Overall, this study provides an effective tool for assessing sand dune risk in Sabha, which can be useful for land management

    Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model

    No full text
    Flash floods (FFs) are amongst the most devastating hazards in arid regions in response to climate change and can cause the loss of agricultural land, human lives and infrastructure. One of the major challenges is the high-intensity rainfall events affecting low-lying areas that are vulnerable to FF. Several works in this field have been conducted using ensemble machine learning models and geohydrological models. However, the current advancement of eXtreme deep learning, which is named eXtreme deep factorisation machine (xDeepFM), for FF susceptibility mapping (FSM) is lacking in the literature. The current study introduces a new model and employs a previously unapplied approach to enhance FSM for capturing the severity of floods. The proposed approach has three main objectives: (i) During- and after-flood effects are assessed through flood detection techniques using Sentinel-1 data. (ii) Flood inventory is updated using remote sensing-based methods. The derived flood effects are implemented in the next step. (iii) An FSM map is generated using an xDeepFM model. Therefore, this study aims to apply xDeepFM to estimate susceptible areas using 13 factors in the emirates of Fujairah, UAE. The performance metrics show a recall of 0.9488), an F1-score of 0.9107), precision of (0.8756) and an overall accuracy of 90.41%. The accuracy of the applied xDeepFM model is compared with that of traditional machine learning models, specifically the deep neural network (78%), support vector machine (85.4%) and random forest (88.75%). Random forest achieves high accuracy, which is due to its strong performance that depends on factors contribution, dataset size and quality, and available computational resources. Comparatively, the xDeepFM model works efficiently for complicated prediction problems having high non-collinearity and huge datasets. The obtained map denotes that the narrow basins, lowland coastal areas and riverbank areas up to 5 km (Fujairah) are highly prone to FF, whilst the alluvial plains in Al Dhaid and hilly regions in Fujairah show low probability. The coastal city areas are bounded by high-rise steep hills and the Gulf of Oman, which can elevate the water levels during heavy rainfall. Four major synchronised influencing factors, namely, rainfall, elevation, drainage density, distance from drainage and geomorphology, account for nearly 50% of the total factors contributing to a very high flood susceptibility. This study offers a platform for planners and decision makers to take timely actions on potential areas in mitigating the effects of FF

    A New Method to Evaluate Gold Mineralisation-Potential Mapping Using Deep Learning and an Explainable Artificial Intelligence (XAI) Model

    No full text
    Geoscientists have extensively used machine learning for geological mapping and exploring the mineral prospect of a province. However, the interpretation of results becomes challenging due to the complexity of machine learning models. This study uses a convolutional neural network (CNN) and Shapley additive explanation (SHAP) to estimate potential locations for gold mineralisation in Rengali Province, a tectonised mosaic of volcano-sedimentary sequences juxtaposed at the interface of the Archaean cratonic segment in the north and the Proterozoic granulite provinces of the Eastern Ghats Belt in Eastern India. The objective is to integrate multi-thematic data involving geological, geophysical, mineralogical and geochemical surveys on a 1:50 K scale with the aim of prognosticating gold mineralisation. The available data utilised during the integration include aero-geophysical (aeromagnetic and aerospectrometric), geochemical (national geochemical mapping), ground geophysical (gravity), satellite gravity, remote sensing (multispectral) and National Geomorphology and Lineament Project structural lineament maps obtained from the Geological Survey of India Database. The CNN model has an overall accuracy of 90%. The SHAP values demonstrate that the major contributing factors are, in sequential order, antimony, clay, lead, arsenic content and a magnetic anomaly in CNN modelling. Geochemical pathfinders, including geophysical factors, have high importance, followed by the shear zones in mineralisation mapping. According to the results, the central parts of the study area, including the river valley, have higher gold prospects than the surrounding areas. Gold mineralisation is possibly associated with intermediate metavolcanics along the shear zone, which is later intruded by quartz veins in the northern part of the Rengali Province. This work intends to model known occurrences with respect to multiple themes so that the results can be replicated in surrounding areas

    Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula

    No full text
    Among all the natural hazards, earthquake prediction is an arduous task. Although many studies have been published on earthquake hazard assessment (EHA), very few have been published on the use of artificial intelligence (AI) in spatial probability assessment (SPA). There is a great deal of complexity observed in the SPA modeling process due to the involvement of seismological to geophysical factors. Recent studies have shown that the insertion of certain integrated factors such as ground shaking, seismic gap, and tectonic contacts in the AI model improves accuracy to a great extent. Because of the black-box nature of AI models, this paper explores the use of an explainable artificial intelligence (XAI) model in SPA. This study aims to develop a hybrid Inception v3-ensemble extreme gradient boosting (XGBoost) model and shapely additive explanations (SHAP). The model would efficiently interpret and recognize factors’ behavior and their weighted contribution. The work explains the specific factors responsible for and their importance in SPA. The earthquake inventory data were collected from the US Geological Survey (USGS) for the past 22 years ranging the magnitudes from 5 Mw and above. Landsat-8 satellite imagery and digital elevation model (DEM) data were also incorporated in the analysis. Results revealed that the SHAP outputs align with the hybrid Inception v3-XGBoost model (87.9% accuracy) explanations, thus indicating the necessity to add new factors such as seismic gaps and tectonic contacts, where the absence of these factors makes the prediction model performs poorly. According to SHAP interpretations, peak ground accelerations (PGA), magnitude variation, seismic gap, and epicenter density are the most critical factors for SPA. The recent Turkey earthquakes (Mw 7.8, 7.5, and 6.7) due to the active east Anatolian fault validate the obtained AI-based earthquake SPA results. The conclusions drawn from the explainable algorithm depicted the importance of relevant, irrelevant, and new futuristic factors in AI-based SPA modeling
    corecore